# Lightning strike trend prediction with GBM in R

**R – SNAP Tech**, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)

Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Lightning activity is projected to increase with climate change. Lightning activity is interesting to model with stochastic gradient boosting (GBM: generalized boosted regression models/gradient boosting machine) in **R**. One use I have for this at SNAP is in the context of landscape fire modeling with SNAP’s ALFRESCO model. The simulations from the model can be enhanced by incorporating information about lightning strike activity over Alaska which varies both spatially and temporally.

The plot above reveals the upward projected trend in lightning strike frequency over Alaska, predominantly interior boreal forest in this case. A preliminary model suggests a 17% increase in lightning strikes per decade on average. More will be shared in a future update.

**leave a comment**for the author, please follow the link and comment on their blog:

**R – SNAP Tech**.

R-bloggers.com offers

**daily e-mail updates**about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.

Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.