[This article was first published on Burns Statistics » R language, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

I’d like to do a song of great social and political import.

The code that created the illustrations in Tao Te Programming is now available as the TaoTeProgramming package on CRAN.

## The sea is just flat hills

And they are both just smooth mountains.

The package contains just over 1000 lines of code.  More than half of that is the functions that create the specific pictures in the book.  All of the real functionality is produced with about 450 lines of R.

You might think this is because I followed the principles in Chapter 21 to get complexity by writing simple code.  Actually it comes from laziness (Chapter 26) — if something wasn’t working well with minimal effort, I threw it out.  Mostly it’s randomness that’s the powerhouse.

## One call to make them all

The next 6 figures are all produced by the exact same code.  The only difference is the random seed that is used.

## Yet more

This post comes under the domain of Chapter 65: Play.

## Epilogue

That’s it. He-he-he …

– Janis Joplin

## Appendix R

Here are the functions (in no particular order) that produce the pictures above (WordPress is not especially good at preserving the formatting).

```require(TaoTeProgramming)

P.polytilepurple14 <- function (filename = "polytilepurple14.png")
{
if(length(filename)) {
png(file=filename, width=512)
par(mar=c(4,5, 0, 2) + .1)
}
polytile(color=grep("purple", colors(), value=TRUE), seed=14)

if(length(filename)) {
dev.off()
}
}

{
if(length(filename)) {
png(file=filename, width=512)
par(mar=c(4,5, 0, 2) + .1)
}
dims=c(2,20), seed=4)

if(length(filename)) {
dev.off()
}
}

P.qtbalturquoise37 <- function (filename = "qtbalturquoise37.png")
{
if(length(filename)) {
png(file=filename, width=512)
par(mar=c(4,5, 0, 2) + .1)
}
seed=37)

if(length(filename)) {
dev.off()
}
}

{
if(length(filename)) {
png(file=filename, width=512)
par(mar=c(4,5, 0, 2) + .1)
}
roads(color=grep("dark", colors(), value=TRUE), lwd=2:3, seed=1)

if(length(filename)) {
dev.off()
}
}

P.wheatwave9 <- function (filename = "wheatwave9.png")
{
if(length(filename)) {
png(file=filename, width=512)
par(mar=c(4,5, 0, 2) + .1)
}
waves(color=grep("wheat", colors(), value=TRUE),
lwd=2, seed=9)

if(length(filename)) {
dev.off()
}
}

P.violetstick54 <- function (filename = "violetstick54.png")
{
if(length(filename)) {
png(file=filename, width=512)
par(mar=c(4,5, 0, 2) + .1)
}
sticks(color="violet", lwd=2, seed=54)

if(length(filename)) {
dev.off()
}
}

P.bendsienna0 <- function (filename = "bendsienna0.png")
{
if(length(filename)) {
png(file=filename, width=512)
par(mar=c(4,5, 0, 2) + .1)
}
bendplotmultcol(xdelta=100, ydelta=200, sd=.001,
color=grep("sienna", colors(), value=TRUE),
seed=0)

if(length(filename)) {
dev.off()
}
}

P.bendsienna1 <- function (filename = "bendsienna1.png")
{
if(length(filename)) {
png(file=filename, width=512)
par(mar=c(4,5, 0, 2) + .1)
}
bendplotmultcol(xdelta=100, ydelta=200, sd=.001,
color=grep("sienna", colors(), value=TRUE),
seed=1)

if(length(filename)) {
dev.off()
}
}

P.bendsienna2 <- function (filename = "bendsienna2.png")
{
if(length(filename)) {
png(file=filename, width=512)
par(mar=c(4,5, 0, 2) + .1)
}
bendplotmultcol(xdelta=100, ydelta=200, sd=.001,
color=grep("sienna", colors(), value=TRUE),
seed=2)

if(length(filename)) {
dev.off()
}
}

P.bendsienna3 <- function (filename = "bendsienna3.png")
{
if(length(filename)) {
png(file=filename, width=512)
par(mar=c(4,5, 0, 2) + .1)
}
bendplotmultcol(xdelta=100, ydelta=200, sd=.001,
color=grep("sienna", colors(), value=TRUE),
seed=3)

if(length(filename)) {
dev.off()
}
}

P.bendsienna4 <- function (filename = "bendsienna4.png")
{
if(length(filename)) {
png(file=filename, width=512)
par(mar=c(4,5, 0, 2) + .1)
}
bendplotmultcol(xdelta=100, ydelta=200, sd=.001,
color=grep("sienna", colors(), value=TRUE),
seed=4)

if(length(filename)) {
dev.off()
}
}

P.bendsienna9 <- function (filename = "bendsienna9.png")
{
if(length(filename)) {
png(file=filename, width=512)
par(mar=c(4,5, 0, 2) + .1)
}
bendplotmultcol(xdelta=100, ydelta=200, sd=.001,
color=grep("sienna", colors(), value=TRUE),
seed=9)

if(length(filename)) {
dev.off()
}
}

P.tree66 <- function (filename = "tree66.png")
{
if(length(filename)) {
png(file=filename, width=512)
par(mar=c(4,5, 0, 2) + .1)
}
treeColor(seed=66)

if(length(filename)) {
dev.off()
}
}

P.hills5 <- function (filename = "hills5.png")
{
if(length(filename)) {
png(file=filename, width=512)
par(mar=c(4,5, 0, 2) + .1)
}
hillscene(color=grep("green|yellow", colors(), value=TRUE),
seed=5)

if(length(filename)) {
dev.off()
}
}

P.sea51 <- function (filename = "sea51.png")
{
if(length(filename)) {
png(file=filename, width=512)
par(mar=c(4,5, 0, 2) + .1)
}
hillscene(tilt=0,
color=grep("aqua", colors(), value=TRUE), seed=51)

if(length(filename)) {
dev.off()
}
}
```

#### random pictures

Here is a function that will draw a random picture from the styles of the ones done in this post (plus a couple more).  That is, the type of plot is selected randomly, and then a random picture of that style is drawn.

```taoteprog <- function()
{
require(TaoTeProgramming)

cmds <- expression(
bendplotmultcol(xdelta=100, ydelta=200, sd=.001,
color=grep("sienna", colors(), value=TRUE)),
roads(color=grep("dark", colors(), value=TRUE), lwd=2:3),
polytile(color=grep("purple", colors(), value=TRUE)),
quadtile(color=grep("orange", colors(), value=TRUE), dims=c(2,20)),
treeColor(),
sticks(color=sample(colors(), 1), lwd=2),
waves(color=grep("wheat", colors(), value=TRUE), lwd=2),
hillscene(tilt=0, color=grep("aqua", colors(), value=TRUE)),
hillscene(color=grep("green|yellow", colors(), value=TRUE)),
butterflies(color=colors()),
chessboard(sample(colors(), 1))
)

eval(cmds[sample(length(cmds), 1)])
}```

The post The TaoTeProgramming R package appeared first on Burns Statistics.

To leave a comment for the author, please follow the link and comment on their blog: Burns Statistics » R language.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

# Never miss an update! Subscribe to R-bloggers to receive e-mails with the latest R posts.(You will not see this message again.)

Click here to close (This popup will not appear again)