Changed and new things in the new version of rgbif, v0.5
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
rgbif
is an R package to search and retrieve data from the Global Biodiverity Information Facilty (GBIF). rgbif
wraps R code around the [GBIF API][gbifapi] to allow you to talk to GBIF from R.
We just pushed a new verion of rgbif
to cran – v0.5.0. Source and binary files are now available on CRAN.
There are a few new functions: count_facet
, elevation
, and installations
. These are described, with examples, below.
Functions to work with the old GBIF API remain in the package, but will be removed as soon as the old API is no longer supported by GBIF. See rgbif-deprecated
in the help for the package.
Note: you can see a detailed list of all changes in new versions on the releases page for rgbif
on Githb here: https://github.com/ropensci/rgbif/releases
Install rgbif and dependencies
install.packages("rgbif")
Load rgbif and dependencies
library(rgbif)
New functions
New function: count_facet
Does facetted count searches, as GBIF doesn't allow faceted searches against the count API. In this example, we have a set of species names, and we want counts by each of a set of 20 countries for each species. This function wraps up some code to essentially give you faceted search capability for the count service – of course this is much slower than if it was done server side.
spplist <- c("Geothlypis trichas", "Tiaris olivacea", "Pterodroma axillaris", "Calidris ferruginea", "Pterodroma macroptera", "Gallirallus australis", "Falco cenchroides", "Telespiza cantans", "Oreomystis bairdi", "Cistothorus palustris") keys <- sapply(spplist, function(x) name_backbone(x, rank = "species")$usageKey) library(plyr) keys <- compact(keys) count_facet(by = "country", countries = 20, removezeros = TRUE) ## country V1 ## 1 ANDORRA 96379 ## 2 UNITED_ARAB_EMIRATES 273098 ## 3 AFGHANISTAN 64020 ## 4 ANTIGUA_BARBUDA 12090 ## 5 ANGUILLA 13188 ## 6 ALBANIA 8202 ## 7 ARMENIA 26253 ## 8 ANGOLA 168412 ## 9 ANTARCTICA 1068590 ## 10 ARGENTINA 1155372 ## 11 AMERICAN_SAMOA 12248 ## 12 AUSTRIA 2702533 ## 13 AUSTRALIA 38729449 ## 14 ARUBA 8178 ## 15 ALAND_ISLANDS 566 ## 16 AZERBAIJAN 17622 ## 17 BOSNIA_HERZEGOVINA 10050 ## 18 BARBADOS 21683 ## 19 BANGLADESH 24255 ## 20 BELGIUM 5167393
New function: elevation
Gets elevation data for a data.frame
of lat/long points, or a list of lat/long points. This function uses the Google Elevation API.
You can get elevation/altitude data back from the GBIF API, but that data is often missing. See the altitude
column in data output from occ_search
- you need to set the fields parameter to all or ask for altitude explicitly.
key <- name_backbone(name = "Puma concolor", kingdom = "plants")$speciesKey dat <- occ_search(taxonKey = key, return = "data", limit = 10, georeferenced = TRUE) head(dat) ## name key longitude latitude ## 1 Puma concolor 866527350 -110.58 31.85 ## 2 Puma concolor 866545169 -103.60 29.16 ## 3 Puma concolor 866495627 -106.39 35.13 ## 4 Puma concolor 866498665 -89.43 20.31 ## 5 Puma concolor 866508658 -105.04 19.47 ## 6 Puma concolor 866523280 -118.24 34.06
Attach elevation data to the data.frame
head(elevation(dat)) ## name key longitude latitude elevation ## 1 Puma concolor 866527350 -110.58 31.85 1294.62 ## 2 Puma concolor 866545169 -103.60 29.16 665.03 ## 3 Puma concolor 866495627 -106.39 35.13 2250.25 ## 4 Puma concolor 866498665 -89.43 20.31 29.05 ## 5 Puma concolor 866508658 -105.04 19.47 69.82 ## 6 Puma concolor 866523280 -118.24 34.06 93.25
New function: installations
Gets metdata on installations via the installations API.
This example requests data for installations with the query terms 'france' in the metadata. We'll just look at the first result, and just the description and its first contact.
df <- installations(query = "france") df$results[[1]]$description ## [1] "Natural Science Collections from the University of Alberta" df$results[[1]]$contacts[[1]] ## $key ## [1] 18037 ## ## $type ## [1] "TECHNICAL_POINT_OF_CONTACT" ## ## $primary ## [1] TRUE ## ## $firstName ## [1] "Jim Whittome" ## ## $email ## [1] "[email protected]" ## ## $createdBy ## [1] "registry-migration.gbif.org" ## ## $modifiedBy ## [1] "registry-migration.gbif.org" ## ## $created ## [1] "2013-02-26T22:15:50.000+0000" ## ## $modified ## [1] "2013-03-18T16:17:46.000+0000"
Another example, just requesting contact data for an installation identifier (i.e. uuid).
installations(data = "contact", uuid = "2e029a0c-87af-42e6-87d7-f38a50b78201") ## [[1]] ## [[1]]$key ## [1] 19952 ## ## [[1]]$type ## [1] "TECHNICAL_POINT_OF_CONTACT" ## ## [[1]]$primary ## [1] TRUE ## ## [[1]]$firstName ## [1] "Biodiversity Informatics Manager" ## ## [[1]]$email ## [1] "[email protected]" ## ## [[1]]$createdBy ## [1] "registry-migration.gbif.org" ## ## [[1]]$modifiedBy ## [1] "2e029a0c-87af-42e6-87d7-f38a50b78201" ## ## [[1]]$created ## [1] "2013-07-22T18:17:06.000+0000" ## ## [[1]]$modified ## [1] "2014-01-10T20:03:03.867+0000"
Minor changes
sapply -> vapply
We replaced sapply
with vapply
as vapply
can be faster than sapply
, and with vapply
you can include a check in the function call to make sure that the returned data elements are of the correct type.
Other minor changes
- Changed name of
country_codes
function togbif_country_codes
to avoid conflicts with other packages. gbifmap
now plots a map withggplot2::coord_fixed(ratio=1)
so that you don't get wonky maps.occ_count
now accepts a call to query publishingCountry with a single parameter (country), to list occurrence counts by publishing country.occ_get
andocc_search
lose parameter minimal, and in its place gains parameter fields, in which you can request fields='minimal' to get just name, taxon key, lat and long. Or set to 'all' to get all fields, or selection the fields you want by passing in a vector of field names.- Updated base url for the GIBF parser function
parsenames
- isocodes dataset now with documentation.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.