JSM 2013 – Wednesday

[This article was first published on Statistical Research » R, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

I was able to attend a continuing education short course workshops at the JSM conference that proved to be quite insightful.  The discussion was on data mining and was titled “Applied Data Mining Analysis: A Step-by-Step Introduction Using Real-World Data Sets”.  The presentation was given by Dan Steinberg and the examples that he gave were based on a proprietary software called SPM (Salford Predictive Modeler).  I have not personally used the software so I’m in no position to endorse or discourage its use.  I generally prefer open source solutions unless there is resounding evidence to use commercial products.  So I’m interested in seeing how this software operates.  The slides for this presentation (as well as other continuing education courses) are available on their website http://info.salford-systems.com/jsm-2013-ctw.  Much of the workshop dealt with a dataset relating to car insurance fraud and how to use CART models and Random Forests.  As an aside I made a post a while back giving some examples in R on those models.  The workshop was educational and informative on how to approach these types of problems using a different software package.  I’m particularly interested in comparing SPM to R or seeing if others have already run some comparisons.

To leave a comment for the author, please follow the link and comment on their blog: Statistical Research » R.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)