NSCB Sexy Stats Version 2
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
This was a revised version of my previous post about the NSCB article. With the suggestion from Tal Galili, below were the new pie charts and the R codes to produce these plots by directly scrapping the data from the webpage using XML and RColorBrewer pagkage.
Unemployment by Age Group
Unemployment by Gender
Unemployment by Civil Status
Unemployment by Educational Level
##################################################################################
library (XML)
library(RColorBrewer)
url<-"http://www.nscb.gov.ph/sexystats/2012/Filipinoversion/SS20121022_joblessness_filver.asp"
unemployment<-readHTMLTable(url, header=T, which=2,stringsAsFactors=F)
agegroup<-unemployment[3:8,c(1,3,5)]
gender<-unemployment[12:13,c(1,3,5)]
civil<-unemployment[17:20,c(1,3,5)]
education<-unemployment[25:31,c(1,3,5)]
#Copy to clipboard
Education Y2006 Y2009
Elementary 42.5 37.9
High School 47.7 52.2
College 9.7 10
educ<-read.table("clipboard", header=T, sep="\t")
colnames(agegroup)<-c("Age.Group","Y2006","Y2009")
colnames(gender)<-c("Gender","Y2006","Y2009")
colnames(civil)<-c("Civil.Status","Y2006","Y2009")
colnames(education)<-c("Education","Y2006","Y2009")
agegroup$Age.Group[6]<-"65 & Up"
agegroup$Y2006<-as.numeric(agegroup$Y2006)
agegroup$Y2009<-as.numeric(agegroup$Y2009)
gender$Gender[2]<-"Female"
gender$Gender[1]<-"Male"
gender$Y2006<-as.numeric(gender$Y2006)
gender$Y2009<-as.numeric(gender$Y2009)
civil$Y2006<-as.numeric(civil$Y2006)
civil$Y2009<-as.numeric(civil$Y2009)
cs<-c("Single","Married","Widowed", "Divorced")
win.graph(w=14.3,h=7)
par(mfrow=c(1,2), oma=c(1,0,1,1) , mar=c(1,1,0,1))
#Chart 1
pie(agegroup$Y2006,label=agegroup$Age.Group, col=brewer.pal(6,”Set1″), border=”white”)
par(new=TRUE)
pie(c(1), labels=NA, border=’white’, radius=0.4)
text(0,0,labels=”Percent\nUnemployment\nby Age Group\nYear 2006″, cex=1.5, font=2)
pie(agegroup$Y2009,label=agegroup$Age.Group, col=brewer.pal(6,”Set1″), border=”white”)
par(new=TRUE)
pie(c(1), labels=NA, border=’white’, radius=0.4)
text(0,0,labels=”Percent\nUnemployment\nby Age Group\nYear 2009″, cex=1.5, font=2)
text(0.5,-1, “Data Source: NSCB\nCreated by: ARSalvacion”, adj=c(0,0), cex=0.7)
#Chart 2
pie(gender$Y2006,label=gender$Gender, col=brewer.pal(2,”Set1″), border=”white”, cex=1.5)
par(new=TRUE)
pie(c(1), labels=NA, border=’white’, radius=0.4)
text(0,0,labels=”Percent\nUnemployment\nby Gender\nYear 2006″, cex=1.5, font=2)
pie(gender$Y2009,label=gender$Gender, col=brewer.pal(2,”Set1″), border=”white”, cex=1.5)
par(new=TRUE)
pie(c(1), labels=NA, border=’white’, radius=0.4)
text(0,0,labels=”Percent\nUnemployment\nby Gender\nYear 2009″, cex=1.5, font=2)
text(0.5,-1, “Data Source: NSCB\nCreated by: ARSalvacion”, adj=c(0,0), cex=0.7)
#Chart 3
pie(civil$Y2006,label=cs, col=brewer.pal(4,”Dark2″), border=”white”)
par(new=TRUE)
pie(c(1), labels=NA, border=’white’, radius=0.4)
text(0,0,labels=”Percent\nUnemployment\nby Civil Status\nYear 2006″, cex=1.5, font=2)
pie(civil$Y2009,label=cs, col=brewer.pal(4,”Dark2″), border=”white”)
par(new=TRUE)
pie(c(1), labels=NA, border=’white’, radius=0.4)
text(0,0,labels=”Percent\nUnemployment\nby Civil Status\nYear 2009″, cex=1.5, font=2)
text(0.5,-1, “Data Source: NSCB\nCreated by: ARSalvacion”, adj=c(0,0), cex=0.7)
#Chart 4
pie(educ$Y2006,label=educ$Education, col=brewer.pal(3,”Dark2″), border=”white”, cex=1.5)
par(new=TRUE)
pie(c(1), labels=NA, border=’white’, radius=0.4)
text(0,0,labels=”Percent\nUnemployment by\nEducational Level\nYear 2006″, cex=1.5, font=2)
pie(educ$Y2009,label=educ$Education, col=brewer.pal(3,”Dark2″), border=”white”, cex=1.5)
par(new=TRUE)
pie(c(1), labels=NA, border=’white’, radius=0.4)
text(0,0,labels=”Percent\nUnemployment by\nEducational Level\nYear 2009″, cex=1.5, font=2)
text(0.5,-1, “Data Source: NSCB\nCreated by: ARSalvacion”, adj=c(0,0), cex=0.7)
##################################################################################
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.