Example of Factor Attribution
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
In the prior post, Factor Attribution 2, I have shown how Factor Attribution can be applied to decompose fund’s returns in to Market, Capitalization, and Value factors, the “three-factor model” of Fama and French. Today, I want to show you a different application of Factor Attribution. First, let’s run Factor Attribution on each the stocks in the S&P 500 to determine it’s Value exposure. Next let’s group stocks into Quantiles based on Value exposure and create back-test for each Quantile. I will rely on the code in the Volatility Quantiles post to create Quantiles.
Let’s start by loading historical prices for all current components of the S&P 500 index.
###############################################################################
# Load Systematic Investor Toolbox (SIT)
# http://systematicinvestor.wordpress.com/systematic-investor-toolbox/
###############################################################################
setInternet2(TRUE)
con = gzcon(url('http://www.systematicportfolio.com/sit.gz', 'rb'))
source(con)
close(con)
#*****************************************************************
# Load historical data
#******************************************************************
load.packages('quantmod')
tickers = sp500.components()$tickers
data <- new.env()
getSymbols(tickers, src = 'yahoo', from = '1970-01-01', env = data, auto.assign = T)
# remove companies with less than 5 years of data
rm.index = which( sapply(ls(data), function(x) nrow(data[[x]])) < 1000 )
rm(list=names(rm.index), envir=data)
for(i in ls(data)) data[[i]] = adjustOHLC(data[[i]], use.Adjusted=T)
bt.prep(data, align='keep.all', dates='1994::')
tickers = data$symbolnames
data.spy <- new.env()
getSymbols('SPY', src = 'yahoo', from = '1970-01-01', env = data.spy, auto.assign = T)
bt.prep(data.spy, align='keep.all', dates='1994::')
#*****************************************************************
# Code Strategies
#******************************************************************
prices = data$prices
nperiods = nrow(prices)
n = ncol(prices)
models = list()
# SPY
data.spy$weight[] = NA
data.spy$weight[] = 1
models$spy = bt.run(data.spy)
# Equal Weight
data$weight[] = NA
data$weight[] = ntop(prices, n)
models$equal.weight = bt.run(data)
Next let’s run Factor Attribution on each the stocks in the S&P 500 to determine it’s Value exposure.
#*****************************************************************
# Compute Factor Attribution for each ticker
#******************************************************************
periodicity = 'weeks'
# load Fama/French factors
factors = get.fama.french.data('F-F_Research_Data_Factors', periodicity = periodicity,download = F, clean = F)
period.ends = endpoints(data$prices, periodicity)
period.ends = period.ends[period.ends > 0]
# add factors and align
data.fa <- new.env()
for(i in tickers) data.fa[[i]] = data[[i]][period.ends,]
data.fa$factors = factors$data / 100
bt.prep(data.fa, align='remove.na')
index = match( index(data.fa$prices), index(data$prices) )
measure = data$prices[ index, ]
for(i in tickers) {
cat(i, '\n')
# Facto Loadings Regression
obj = factor.rolling.regression(data.fa, i, 36, silent=T)
measure[,i] = coredata(obj$fl$estimate$HML)
}
Finally, let’s group stocks into Quantiles based on Value exposure and create back-test for each Quantile.
#*****************************************************************
# Create Value Quantiles
#******************************************************************
n.quantiles=5
start.t = 1+36
quantiles = weights = coredata(measure) * NA
for( t in start.t:nrow(weights) ) {
factor = as.vector(coredata(measure[t,]))
ranking = ceiling(n.quantiles * rank(factor, na.last = 'keep','first') / count(factor))
quantiles[t,] = ranking
weights[t,] = 1/tapply(rep(1,n), ranking, sum)[ranking]
}
quantiles = ifna(quantiles,0)
#*****************************************************************
# Create backtest for each Quintile
#******************************************************************
for( i in 1:n.quantiles) {
temp = weights * NA
temp[] = 0
temp[quantiles == i] = weights[quantiles == i]
data$weight[] = NA
data$weight[index,] = temp
models[[ paste('Q',i,sep='_') ]] = bt.run(data, silent = T)
}
#*****************************************************************
# Create Report
#******************************************************************
plotbt.custom.report.part1(models)
plotbt.strategy.sidebyside(models)
There is no linear relationship between Value Quantiles and historical performance. I’m also suspecting that that implied Value exposure might be quite different than the real Price/Book ratio for each stock. Let me know what do you think about this approach.
In the next post I will show another example of Factor Attribution.
To view the complete source code for this example, please have a look at the bt.fa.value.quantiles.test() function in bt.test.r at github.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

