Factor Attribution 2
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
I want to continue with Factor Attribution theme that I presented in the Factor Attribution post. I have re-organized the code logic into the following 4 functions:
- factor.rolling.regression – Factor Attribution over given rolling window
- factor.rolling.regression.detail.plot – detail time-series plot and histogram for each factor
- factor.rolling.regression.style.plot – historical style plot for selected 2 factors
- factor.rolling.regression.bt.plot – compare fund’s performance with portfolios implied by Factor Attribution
Let’s first replicate style and performance charts from the Three Factor Rolling Regression Viewer at the mas financial tools web site.
###############################################################################
# Load Systematic Investor Toolbox (SIT)
# http://systematicinvestor.wordpress.com/systematic-investor-toolbox/
###############################################################################
setInternet2(TRUE)
con = gzcon(url('http://www.systematicportfolio.com/sit.gz', 'rb'))
source(con)
close(con)
#*****************************************************************
# Load historical data
#******************************************************************
load.packages('quantmod')
tickers = 'VISVX'
periodicity = 'months'
data <- new.env()
getSymbols(tickers, src = 'yahoo', from = '1980-01-01', env = data, auto.assign = T)
for(i in ls(data)) {
temp = adjustOHLC(data[[i]], use.Adjusted=T)
period.ends = endpoints(temp, periodicity)
period.ends = period.ends[period.ends > 0]
if(periodicity == 'months') {
# reformat date to match Fama French Data
monthly.dates = as.Date(paste(format(index(temp)[period.ends], '%Y%m'),'01',sep=''), '%Y%m%d')
data[[i]] = make.xts(coredata(temp[period.ends,]), monthly.dates)
} else
data[[i]] = temp[period.ends,]
}
data.fund = data[[tickers]]
#*****************************************************************
# Fama/French factors
#******************************************************************
factors = get.fama.french.data('F-F_Research_Data_Factors', periodicity = periodicity,download = T, clean = F)
# add factors and align
data <- new.env()
data[[tickers]] = data.fund
data$factors = factors$data / 100
bt.prep(data, align='remove.na', dates='1994::')
#*****************************************************************
# Facto Loadings Regression
#******************************************************************
obj = factor.rolling.regression(data, tickers, 36)
#*****************************************************************
# Reports
#******************************************************************
factor.rolling.regression.detail.plot(obj)
factor.rolling.regression.style.plot(obj)
factor.rolling.regression.bt.plot(obj)
Next let’s add the Momentum factor from the Kenneth R French: Data Library and run Factor Attribution one more time.
#*****************************************************************
# Fama/French factors + Momentum
#******************************************************************
factors = get.fama.french.data('F-F_Research_Data_Factors', periodicity = periodicity,download = T, clean = F)
factors.extra = get.fama.french.data('F-F_Momentum_Factor', periodicity = periodicity,download = T, clean = F)
factors$data = merge(factors$data, factors.extra$data)
# add factors and align
data <- new.env()
data[[tickers]] = data.fund
data$factors = factors$data / 100
bt.prep(data, align='remove.na', dates='1994::')
#*****************************************************************
# Facto Loadings Regression
#******************************************************************
obj = factor.rolling.regression(data, tickers, 36)
#*****************************************************************
# Reports
#******************************************************************
factor.rolling.regression.detail.plot(obj)
factor.rolling.regression.style.plot(obj)
factor.rolling.regression.bt.plot(obj)

To visualize style from the Momentum point of view, let’s create a style chart that shows fund’s attribution in the HML / Momentum space.
factor.rolling.regression.style.plot(obj, xfactor='HML', yfactor='Mom')
I designed the Factor Attribution functions to take any user specified factors. This way you can easily run Factor Attribution on any combination of the historical factor returns from the Kenneth R French: Data Library Or use your own historical factor returns data.
To view the complete source code for this example, please have a look at the three.factor.rolling.regression() function in bt.test.r at github.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.





