NIT: Fatty acids study in R – Part 002
[This article was first published on NIR-Quimiometría, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
> library(chemometrics)
> fatmsc_nipals<-nipals(fat_msc,a=10,it=160)
> CPs<-seq(1,10,by=1)
> matplot(CPs,t(fatmsc_nipals$T),lty=1,pch=21,
+ xlab=”PC_number”,ylab=”Explained_Var”)
In the 2D plot, we can see that with 3 or 4 principal components, almost all the variance is explained. We see also how samples are well projected over the first PC, but how one sample seems to be an outlier when projected over the second PC.
Also another or the same sample seems to be an outlier when projected over the 4th PC.
A look to the PC planes will show us the distribution of the samples.
> pairs(fatmsc_nipals$T[,1:4],col=”red”)
> pairs(fatmsc_nipals$T[,1:4],col=”red”)
Let´s calculate the Mahalanobis distances to study better our sample population and to find outliers:
> fatmsc_nipals4pc<-fatmsc_nipals$T[,1:4]
> Moutlier(fatmsc_nipals4pc,quantile =0.975, plot=TRUE)
$md
[1] 3.1025142 1.6787234 1.1155225 1.7130001 2.6460755 1.3341133
[7] 1.6411590 1.8790763 0.8541428 1.1332246 2.3236420 2.8866269
[13] 1.3146715 1.2759619 1.4875943 1.0603605 1.4880568 0.9665029
[19] 1.8239722 1.6562767 1.9359163 1.6708538 2.2936930 1.4845431
[25] 2.6051294 1.1436901 0.3571686 2.0533289 1.4248877 0.7107637
[31] 1.2504387 2.0814050 1.8502729 3.1433570 2.2836840 0.3547710
[37] 2.9424866 2.6208234 0.6914464 2.9649615 1.7914432 2.2730964
[43] 3.0530848 1.1569603 1.5458923 1.3590878 1.9744677 1.8299434
[49] 1.6564926 2.7850876 2.9147344 2.9858931 2.0337672 2.6220121
[55] 2.4169714 0.9873321 2.7614810 3.4578931 4.3510717 2.1840045
[61] 3.4219424 2.6471133 2.5050841 1.6500068 2.2036638 11.6174968
[67] 3.1637271 3.0938694 2.3489142 2.5605777 1.7651892 0.7602064
[73] 0.8169349 1.1276683 1.0530317 0.9008947 1.5501520 0.8291586
[79] 1.8831524 0.5590048 2.3312774 2.0025709 0.7148548 1.9298735
[85] 1.7581300 1.9388953 1.4556749 2.0408671 1.7715642 2.5011261
[91] 4.4534119 2.8088303 4.2640203 0.9677583 6.1127505 1.2239764
[97] 5.9621142 0.9987361 1.5365592 0.8917701 0.6152401 0.8996054
[103] 1.8370282 1.3580873 0.7873400 0.9220825 1.8619488 1.9298884
[109] 1.4912294 0.9832971 0.9842641 1.2018128 0.7935046 0.8925428
[115] 1.2003102 1.4462257 1.2691323 1.8269249 1.2838734 0.9981628
[121] 1.9145605 1.7954542 1.5230153 1.3347716 1.1156095 1.5871748
[127] 1.4889242 1.1780966 1.4165463 1.0057897 1.6742841 1.7999796
[133] 1.2231126 1.3167038 1.7676869 1.7475316 1.5718934 0.7844088
[139] 0.7250911 0.8394164 0.9434329 1.3583476 0.9143295 1.5666855
[145] 0.8250539 0.5027369 1.6273106 1.8940848 0.8493707 1.4611669
[151] 0.3644340 0.7813530 1.6332761 1.0557438 1.2848675 1.0695355
[157] 1.7891441 0.6474083 0.8387371 0.9655893 1.6508979 1.4765710
[163] 2.6846350 1.9820580 2.0689903 1.5834826 1.2542036 0.8494160
[169] 1.3529783 0.8451586 1.6718654 2.5892144 1.3678979 1.4070544
[175] 1.3870741 1.2010282 1.3446915 1.4648297 1.4599712 1.5161282
[181] 1.2140609 2.1280737 1.1751724 1.5939065 0.8337121 1.0548981
[187] 1.2061079 1.1519596 1.4011917 1.1339365 1.3009569 1.1758361
[193] 0.9313623 0.9973675 1.3783733 1.3145118 1.4065661 2.2898204
[199] 1.3149368 1.6195627 1.3458978 1.1028901 1.5325457 1.4918670
[205] 1.6747645 1.0730898 1.3003462 2.2767521 1.2188084 1.4188156
[211] 1.2551781 1.1094945 1.7552917 1.6537534 1.0851287 1.1067528
[217] 1.4062079 1.6325028 2.0682626
$cutoff
[1] 3.338156
To leave a comment for the author, please follow the link and comment on their blog: NIR-Quimiometría.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.