# Time Series Matching strategy backtest

**Systematic Investor » R**, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)

Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

This is a quick post to address comments raised in the Time Series Matching post. I will show a very simple example of backtesting a Time Series Matching strategy using a distance weighted prediction. I have to warn you, the strategy’s performance is worse then the Buy and Hold.

I used the code from Time Series Matching post and re-arranged it into 3 functions:

bt.matching.find – finds historical matches similar to the given query (pattern).

bt.matching.overlay – creates matrix that overlays all matches one on top of each other.

bt.matching.overlay.table – creates and plots matches summary table.

I will use historical prices for ^GSPC to extend SPY time series. I will create a monthly backtest, that trades at the end of the month, staring January 1994. Each month, I will look back for the best historical matches similar to the last 90 days in the last 10 years of history.

I will compute a distance weighted average prediction for the next month and will go long if prediction is positive, otherwise stay in cash. This is a very simple backtest and the strategy’s performance is worse then the Buy and Hold.

Following code loads historical prices from Yahoo Fiance and setups Time Series Matching strategy backtest using the Systematic Investor Toolbox:

############################################################################### # Load Systematic Investor Toolbox (SIT) ############################################################################### con = gzcon(url('http://www.systematicportfolio.com/sit.gz', 'rb')) source(con) close(con) #***************************************************************** # Load historical data #****************************************************************** load.packages('quantmod') tickers = spl('SPY,^GSPC') data <- new.env() getSymbols(tickers, src = 'yahoo', from = '1950-01-01', env = data, auto.assign = T) bt.prep(data, align='keep.all') # combine SPY and ^GSPC scale = as.double( data$prices$SPY['1993:01:29'] / data$prices$GSPC['1993:01:29'] ) hist = c(scale * data$prices$GSPC['::1993:01:28'], data$prices$SPY['1993:01:29::']) #***************************************************************** # Backtest setup: # Starting January 1994, each month search for the 10 best matches # similar to the last 90 days in the last 10 years of history data # # Invest next month if distance weighted prediction is positive # otherwise stay in cash #****************************************************************** month.ends = endpoints(hist, 'months') month.ends = month.ends[month.ends > 0] start.index = which(date.year(index(hist[month.ends])) == 1994)[1] weight = hist * NA for( i in start.index : len(month.ends) ) { obj = bt.matching.find(hist[1:month.ends[i],], normalize.fn = normalize.first) matches = bt.matching.overlay(obj) # compute prediction for next month n.match = len(obj$min.index) n.query = len(obj$query) month.ahead.forecast = matches[,(2*n.query+22)]/ matches[,2*n.query] - 1 # Distance weighted average temp = round(100*(obj$dist / obj$dist[1] - 1)) n.weight = max(temp) + 1 weights = (n.weight - temp) / ( n.weight * (n.weight+1) / 2) weights = weights / sum(weights) # barplot(weights) avg.direction = weighted.mean(month.ahead.forecast[1:n.match], w=weights) # Logic weight[month.ends[i]] = 0 if( avg.direction > 0 ) weight[month.ends[i]] = 1 }

Next, let’s compare the Time Series Matching strategy to Buy & Hold:

#***************************************************************** # Code Strategies #****************************************************************** tickers = 'SPY' data <- new.env() getSymbols(tickers, src = 'yahoo', from = '1950-01-01', env = data, auto.assign = T) bt.prep(data, align='keep.all') prices = data$prices # Buy & Hold data$weight[] = 1 buy.hold = bt.run(data) # Strategy data$weight[] = NA data$weight[] = weight['1993:01:29::'] capital = 100000 data$weight[] = (capital / prices) * bt.exrem(data$weight) test = bt.run(data, type='share', capital=capital, trade.summary=T) #***************************************************************** # Create Report #****************************************************************** plotbt.custom.report.part1(test, buy.hold, trade.summary=T)

How would you change the strategy or backtest to make it profitable? Please share your ideas. I looking forward to exploring them.

To view the complete source code for this example, please have a look at the bt.matching.backtest.test() function in bt.test.r at github.

**leave a comment**for the author, please follow the link and comment on their blog:

**Systematic Investor » R**.

R-bloggers.com offers

**daily e-mail updates**about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.

Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.