# Index decomposition with R

**factbased**, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)

Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Few days ago, I finally finished a small package `ida`

. It enables you to analyse contributions of underlying factors to the change in an aggregate, using methods based on index number theory. These methods have become popular by, but are not restricted to, investigating the change of CO2 emissions.

Here is a chart that shows what the change of population, welfare, efficiency and fuel substitution contributed to CO2 emissions:

The numbers refer to Gt CO2. The data comes from Worldbank, however we treated missing values rather uncautious here. So the result may or may not be valid. However, it puts the efforts in perspective: Clearly the reduction of the energy use per GDP has not been capable to compensate the additional emissions from population growth and income per capita growth. The carbon intensity, i.e. the emissions per energy unit, remained nearly unchanged.

Here is how to produce the chart:

Read more »**leave a comment**for the author, please follow the link and comment on their blog:

**factbased**.

R-bloggers.com offers

**daily e-mail updates**about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.

Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.