Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Some may have had reservations about the “randomness” of the straws I plotted to illustrate Bertrand’s paradox. As they were all going North-West/South-East. I had actually made an inversion between cbind and rbind in the R code, which explained for this non-random orientation. Above is the corrected version, which sounds “more random” indeed. (And using wheat as the proper, if weak, colour!) The outcome of a probability of 1/2 has not changed, of course. Here is the R code as well:

lacorde=rep(0,10^3)
plot(0,0,type="n",xlim=c(-2,2),ylim=c(-2,2))

for (t in 1:10^3){

#distance from O to chord
dchord=10

while (dchord>1){
#Generate "random" straw in large box till it crosses unit circle

a=runif(2,-10,10)
b=runif(2,-10,10)

#endpoints outside the circle
if ((sum(a^2)>1)&&(sum(b^2)>1)){

theta=abs(acos(t(b-a)%*%a/sqrt(sum((b-a)^2)*sum(a^2))))
theta=theta%%pi
thetb=abs(acos(t(a-b)%*%b/sqrt(sum((b-a)^2)*sum(b^2))))
thetb=thetb%%pi

#chord inside
if (max(abs(theta),abs(thetb))
As a more relevant final remark, I came to the conclusion (this morning while running) that the probability of this event can be anything between 0 and 1, rather than the three traditional 1/4, 1/3 and 1/2. Indeed, for any distribution of the “random” straws, hence for any distribution on the chord length L, a random draw can be expressed as L=F⁻¹(U), where U is uniform. Therefore, this draw is also an acceptable transform of a uniform draw, just like Bertrand’s three solutions.
Filed under: Books, R, Statistics Tagged: Bertrand's paradox, chord, E.T. Jaynes, height, probability theory, R, simulation, triangle

var vglnk = {key: '949efb41171ac6ec1bf7f206d57e90b8'};
(function(d, t) {
var s = d.createElement(t);
s.type = 'text/javascript';
s.async = true;
// s.defer = true;
var r = d.getElementsByTagName(t)[0];
r.parentNode.insertBefore(s, r);
}(document, 'script'));

Related
ShareTweet