iPhone App Store Acceptance Time / Download Results
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Complaints about the iPhone App Store are not uncommon among developers. The submission process is frustrating at best, you can expect arbitrary rejections, and Apple’s policies have not always been particularly open or welcoming. If you make it through the process and get an app accepted, it can be essentially buried where it will remain unused unless you dedicate significant energy to marketing it. |
And so I figured I would do a small scale experiment to check App Store response in these areas (and App Store user behavior)….and post the results here in the hopes that developers planning to write iPhone apps would benefit from my experience.
Cheaper by the (Half) Dozen
Having a limited amount of time available, and appreciating the value of quick iterations in development or in any business process, I limited myself to submitting a few apps with similar functionality and different target audiences. What follows is my findings (with a bit of R code used for analysis).
Six free iPhone apps were submitted for publication during a 21 day period between July 23, 2010 and August 13, 2010. Four apps were accepted and two were rejected.
The four apps that were accepted:
- R-Chart (R Programming Community News) has been available 96 days and averaged 4.44 downloads per day. (Download it if you want to keep up with this blog and/or R community news).
- FRB (U.S. Federal Reserve Board News) has been available 82 days and averaged 4.15 downloads per day.
- Duq News (Duquesne University News) has been available 92 days and averaged 2.52 downloads per day.
- Visit the Lehigh Valley (Lehigh Valley Tourism Info) has been available 93 days and averaged1.31 downloads per day.
Two apps were rejected
- DeSales U (DeSales University News)
- Blender Buzz (Blender Software Blog/News )
Review Process and Time
Conclusion…
So getting an app accepted by the app store is not an insurmountable process – but does require time and planning. It is not an activity that will just take care of itself. And because of inconsistency in the process, you would do better to allot a bit of extra time for the app store process. And unless your app fills a rather unique niche, you will need to do marketing in the same way that you would for a web site or any other resource.
R Code used in the Analysis is Below
> # Get the total downloads
> sum(df$Downloads)
>
> Do a plot of downloads
+ geom_bar() + coord_flip() + theme_bw()
> ggsave(‘app_downloads.png’)
>
> ggplot(data=df, aes(x=App, y=as.numeric(Processing_Time), fill=Response)) + geom_bar() + coord_flip() + theme_bw()
> ggsave(‘processing_time.png’)
>
> df$Processing_Time = df$Response_Date – df$Submitted_Date
>
> # Time each app has been available for download
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.