Sean Taylor, a PhD candidate in Information Systems at NYU’s Stern School of Business, describes the "Statistics Software Signal" and his observation that some software packages are correlated with bad science. While, I don't agree with all of his points (some fine analyses have been done with Stata, for example), I thought this was an interesting take on the R language:

**When operating software doesn’t require a lot of training, users of that software are likely to be poorly trained.** This is an adverse selection issue. Researchers who care about statistics enough should have gravitated toward R at some point. I also trust results produced using R, not because it is better software, but because it is difficult to learn. The software is not causing you to be a better scientist, but better scientists will be using it.

You can also read his list a of what your choice of statistical software pacakge (SAS, SPSS, Matlab, Julia and more) says about you, at the link below.

decomposition: The Statistics Software Signal

*Related*

To

**leave a comment** for the author, please follow the link and comment on their blog:

** Revolutions**.

R-bloggers.com offers

**daily e-mail updates** about

R news and

tutorials on topics such as:

Data science,

Big Data, R jobs, visualization (

ggplot2,

Boxplots,

maps,

animation), programming (

RStudio,

Sweave,

LaTeX,

SQL,

Eclipse,

git,

hadoop,

Web Scraping) statistics (

regression,

PCA,

time series,

trading) and more...

If you got this far, why not

__subscribe for updates__ from the site? Choose your flavor:

e-mail,

twitter,

RSS, or

facebook...