Update: Parameters as Population Quantities

May 16, 2012
By

(This article was first published on BioStatMatt » R, and kindly contributed to R-bloggers)

Some time ago, I had an ineloquent and less-than-cordial online discussion with a commenter on this site, partially about how statisticians define the term "parameter". This post is just to quote a relevant passage from "Bootstrap Methods and Their Application", by Davison and Hinkley (1997), that better articulates a point I had made earlier.

2.1.1 Statistical Functions
Many simple statistics can be thought of in terms of properties of the EDF [empirical distribution function]. For example the sample average $\bar{y} = n^{-1} \sigma y_j$ is the mean of the EDF. More generally, the statistic of interest $t$ will be a symmetric function of $y_1,\ldots,y_n$, meaning that $t$ is unaffected by reordering the data. This implies that $t$ depends on the ordered values $y_{(1)} \leq \cdots \leq y_{(n)}$, or equivalently on the EDF $\hat{F}$. Often this can be expressed simply as $t = t(\hat{F})$, where $t(\cdot)$ is a statistical function - essentially just a mathematical expression of the algorithm for computing $t$ from $\hat{F}$. Such a statistical function is of central importance in the nonparametric case because it also defines the parameter of interest $\theta$ through the "algorithm" $\theta = t(F)$. This corresponds to the qualitative idea that $\theta$ is a characteristic of the population described by $F$...

To leave a comment for the author, please follow the link and comment on his blog: BioStatMatt » R.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...



If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.