(This article was first published on

Many distributions may be used to describe patterns that are non-negative; however, there are not as many choices when an upper bound is also needed (although the beta distribution is very flexible). For various reasons, truncated distributions are sometimes preferred, and the truncated normal is particularly popular. While R has a package that includes the standard functions for this distribution (see rtnorm, dtnorm, etc. in the msm pacakge), the true expectation and variance of the distribution may be of interest. It turns out that the first two moments of the truncated normal are not too hard to calculate (but worth writing functions for):**Quantitative Ecology**, and kindly contributed to R-bloggers)

mean.tnorm<-function(mu,sd,lower,upper){

##return the expectation of a truncated normal distribution

lower.std=(lower-mu)/sd

upper.std=(upper-mu)/sd

mean=mu+sd*(dnorm(lower.std)-dnorm(upper.std))/

(pnorm(upper.std)-pnorm(lower.std))

return(mean)

}

var.tnorm<-function(mu,sd,lower,upper){

##return the variance of a truncated normal distribution

lower.std=(lower-mu)/sd

upper.std=(upper-mu)/sd

variance=sd^2*(1+(lower.std*dnorm(lower.std)-upper.std*dnorm(upper.std))/

(pnorm(upper.std)-pnorm(lower.std))-((dnorm(lower.std)-dnorm(upper.std))/

(pnorm(upper.std)-pnorm(lower.std)))^2)

return(variance)

}###Testing

>library(msm)

> a=rtnorm(1000000,-5,2,1,3)

>paste(mean(a),var(a))

[1] "1.52135857341077 0.197281057170982"

>paste(mean.tnorm(-5,2,1,3),var.tnorm(-5,2,1,3))

[1] "1.52090857118 0.197111175109889"

To

**leave a comment**for the author, please follow the link and comment on his blog:**Quantitative Ecology**.R-bloggers.com offers

**daily e-mail updates**about R news and tutorials on topics such as: visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...