(This article was first published on

**You Know**, and kindly contributed to R-bloggers)Inspired by this clever image, I thought I would whip it up in R.

Results:

Below is the R code:

`1: # Prepare ----------------------------------------------------------------- `

2: rm(list=ls());gc()

3: pkg <- c("ggplot2")

4: inst <- pkg %in% installed.packages()

5: if(length(pkg[!inst]) > 0) install.packages(pkg[!inst])

6: lapply(pkg,library,character.only=TRUE)

7: rm(inst,pkg)

8: # Create dataset ----------------------------------------------------------

9: d1 <- data.frame(member=c(rep("Homer",3),

10: rep("Marge",3),

11: rep("Bart",3),

12: rep("Lisa",2),

13: rep("Maggie",2)),

14: shade=c("HomerPants","HomerShirt","Skin",

15: "MargeDress","Skin","MargeHair",

16: "BartShorts","BartShirt","Skin",

17: "LisaDress","Skin",

18: "MaggieOnesie","Skin"),

19: height=c(20,20,25,

20: 40,20,40,

21: 15,15,18,

22: 28,15,

23: 18,11))

24: d1$member <- ordered(d1$member,levels=c("Homer","Marge","Bart","Lisa","Maggie"))

25: d1$shade <- ordered(d1$shade,levels=c("HomerPants","HomerShirt","Skin",

26: "MargeDress","MargeHair",

27: "BartShorts","BartShirt",

28: "LisaDress",

29: "MaggieOnesie"))

30: # Chart the data ----------------------------------------------------------

31: g1 <- ggplot(d1,aes(x=member,y=height,fill=shade)) +

32: geom_bar(stat="identity") +

33: scale_fill_manual(values=c("#3333FF","#FFFFFF","#FFFF33",

34: "#66CC33","#000099",

35: "#6633CC","#CC0000",

36: "#FF6600",

37: "#0099CC")) +

38: theme(legend.position="none",

39: axis.title.x=element_blank(),

40: axis.title.y=element_blank(),

41: axis.text.x=element_blank(),

42: axis.text.y=element_blank()) +

43: ggtitle("Moe's Bar Chart")

44: g1

45: # Save image --------------------------------------------------------------

46: png("Simpsons.png")

47: g1

48: dev.off()

To

**leave a comment**for the author, please follow the link and comment on their blog:**You Know**.R-bloggers.com offers

**daily e-mail updates**about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...