Statistique de l’assurance STT6705V, partie 11

November 29, 2010
By

(This article was first published on Freakonometrics - Tag - R-english, and kindly contributed to R-bloggers)

Last course will be uploaded soon (the links will be here and there). The R code considered is given below. First, we had to work a little bit on the datasets,

tabB=read.table("http://perso.univ-rennes1.fr/arthur.charpentier/tabB.csv", 
sep=";",header=FALSE)
ANNEE=tabB[,1]
BASEB=tabB[,seq(2,246,by=2)]
BASEB=as.matrix(BASEB[,1:100])
AGE=0:ncol(BASEB)
tabC=read.table("http://perso.univ-rennes1.fr/arthur.charpentier/tabC.csv",
sep=";",header=FALSE)
an=tabC[,1]
an=an[-c(16,23,43,48,51,53,106)]
BASEC=tabC[,2:101]
BASEC=as.matrix(BASEC[-c(16,23,43,48,51,53,106),])  
BASEB=BASEB[,1:90]
BASEC=BASEC[,1:90]
AGE=AGE[1:90]
MU=as.matrix(log(BASEB/BASEC))
persp(ANNEE,AGE,MU,theta=70,shade=TRUE,
col="green")
library(rgl)
persp3d(ANNEE,AGE,MU,col="light blue")
(this last line is here to play a little bit with the 3d mortality surface). We first used the Lee-Carter function proposed by JPMorgan in LifeMetrics,
source("http://perso.univ-rennes1.fr/arthur.charpentier/fitModels.r")
x=AGE
y=ANNEE
d=BASEB
e=BASEC
w=matrix(1,nrow(d),ncol(e))
LC1=fit701(x,y,e,d,w)
plot(AGE,LC1$beta1)
plot(ANNEE,LC1$kappa2)
plot(AGE,LC1$beta2)
Then we considered nonlinear Poisson regression,
D=as.vector(BASEB)
E=as.vector(BASEC)
A=rep(AGE,each=length(ANNEE))
Y=rep(ANNEE,length(AGE))
base=data.frame(D,E,A,Y,a=as.factor(A),
y=as.factor(Y))
 
LC2=gnm(D~a+Mult(a,y),offset=log(E),
family=poisson,data=base)
plot(AGE[-1],LC2$coefficients[1]+LC2$coefficients[2:90])
lines(AGE,LC1$beta1,col="blue")
plot(ANNEE,LC2$coefficients[181:279])
plot(ANNEE,LC1$kappa2,col="red")
plot(AGE,LC1$beta2)
As mentioned during the course, this technique is great... but it is sentive to initial values in the optimization procedure. For instance, consider the following loops,
plot(AGE[-1],LC2$coefficients[1]+LC2$coefficients[2:90],
type="l",col="blue",xlab="",ylab="")
for(s in 1:200){
LC2=gnm(D~a+Mult(a,y),offset=log(E),
family=poisson,data=base)
lines(AGE[-1],LC2$coefficients[1]+LC2$coefficients[2:90],col="blue")
}
Here are representation of the first component in the Lee-Carter model,
XXXXHence, the estimation depends on the choice of initial values... even if the shape remains unchanged...
Then, we finnished with Rob Hyndman's package,
library(demography)
base=demogdata(data=t(exp(MU)),pop=t(BASEC),
ages=AGE,years=ANNEE,type="mortality",
label="France",name="Total",lambda=0)
LC3=lca(base)
LC3F=forecast(LC3,100)
plot(LC3$year,LC3$kt,xlim=c(1900,2100),ylim=c(-300,150))
lines(LC3F$year,LC3$kt[99]+LC3F$kt.f$mean)
lines(LC3F$year,LC3$kt[99]+LC3F$kt.f$lower,lty=2)
lines(LC3F$year,LC3$kt[99]+LC3F$kt.f$upper,lty=2)
We concluded with a short discussion about errors of the Lee-Carter model (on French mortality)
D=as.vector(BASEB)
E=as.vector(BASEC)
A=rep(AGE,each=length(ANNEE))
Y=rep(ANNEE,length(AGE))
base=data.frame(D,E,A,Y,a=as.factor(A),
y=as.factor(Y))
RES=residuals(LC2,"pearson")
base$res=RES
plot(base$A,base$res)
couleur=heat.colors(100)
plot(base$A,base$res,col=couleur[base$Y-1898])
plot(base$Y,base$res,col=couleur[base$A+1])
The graphs can be seen below (as a function of time, and a function of ages)
his Wednesday, we will discuss how we can use those estimators (or other ones) in life insurance...

To leave a comment for the author, please follow the link and comment on his blog: Freakonometrics - Tag - R-english.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...



If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Tags: , , , , , ,

Comments are closed.