Statistique de l’assurance STT6705V, partie 11

November 29, 2010
By

(This article was first published on Freakonometrics - Tag - R-english, and kindly contributed to R-bloggers)

Last course will be uploaded soon (the links will be here and there). The R code considered is given below. First, we had to work a little bit on the datasets,

tabB=read.table("http://perso.univ-rennes1.fr/arthur.charpentier/tabB.csv", 
sep=";",header=FALSE)
ANNEE=tabB[,1]
BASEB=tabB[,seq(2,246,by=2)]
BASEB=as.matrix(BASEB[,1:100])
AGE=0:ncol(BASEB)
tabC=read.table("http://perso.univ-rennes1.fr/arthur.charpentier/tabC.csv",
sep=";",header=FALSE)
an=tabC[,1]
an=an[-c(16,23,43,48,51,53,106)]
BASEC=tabC[,2:101]
BASEC=as.matrix(BASEC[-c(16,23,43,48,51,53,106),])  
BASEB=BASEB[,1:90]
BASEC=BASEC[,1:90]
AGE=AGE[1:90]
MU=as.matrix(log(BASEB/BASEC))
persp(ANNEE,AGE,MU,theta=70,shade=TRUE,
col="green")
library(rgl)
persp3d(ANNEE,AGE,MU,col="light blue")

(this last line is here to play a little bit with the 3d mortality surface). We first used the Lee-Carter function proposed by JPMorgan in LifeMetrics,

source("http://perso.univ-rennes1.fr/arthur.charpentier/fitModels.r")
x=AGE
y=ANNEE
d=BASEB
e=BASEC
w=matrix(1,nrow(d),ncol(e))
LC1=fit701(x,y,e,d,w)
plot(AGE,LC1$beta1)
plot(ANNEE,LC1$kappa2)
plot(AGE,LC1$beta2)

Then we considered nonlinear Poisson regression,

D=as.vector(BASEB)
E=as.vector(BASEC)
A=rep(AGE,each=length(ANNEE))
Y=rep(ANNEE,length(AGE))
base=data.frame(D,E,A,Y,a=as.factor(A),
y=as.factor(Y))
 
LC2=gnm(D~a+Mult(a,y),offset=log(E),
family=poisson,data=base)
plot(AGE[-1],LC2$coefficients[1]+LC2$coefficients[2:90])
lines(AGE,LC1$beta1,col="blue")
plot(ANNEE,LC2$coefficients[181:279])
plot(ANNEE,LC1$kappa2,col="red")
plot(AGE,LC1$beta2)

As mentioned during the course, this technique is great… but it is sentive to initial values in the optimization procedure. For instance, consider the following loops,

plot(AGE[-1],LC2$coefficients[1]+LC2$coefficients[2:90],
type="l",col="blue",xlab="",ylab="")
for(s in 1:200){
LC2=gnm(D~a+Mult(a,y),offset=log(E),
family=poisson,data=base)
lines(AGE[-1],LC2$coefficients[1]+LC2$coefficients[2:90],col="blue")
}

Here are representation of the first component in the Lee-Carter model,
XXXXHence, the estimation depends on the choice of initial values… even if the shape remains unchanged…
Then, we finnished with Rob Hyndman’s package,

library(demography)
base=demogdata(data=t(exp(MU)),pop=t(BASEC),
ages=AGE,years=ANNEE,type="mortality",
label="France",name="Total",lambda=0)
LC3=lca(base)
LC3F=forecast(LC3,100)
plot(LC3$year,LC3$kt,xlim=c(1900,2100),ylim=c(-300,150))
lines(LC3F$year,LC3$kt[99]+LC3F$kt.f$mean)
lines(LC3F$year,LC3$kt[99]+LC3F$kt.f$lower,lty=2)
lines(LC3F$year,LC3$kt[99]+LC3F$kt.f$upper,lty=2)

We concluded with a short discussion about errors of the Lee-Carter model (on French mortality)

D=as.vector(BASEB)
E=as.vector(BASEC)
A=rep(AGE,each=length(ANNEE))
Y=rep(ANNEE,length(AGE))
base=data.frame(D,E,A,Y,a=as.factor(A),
y=as.factor(Y))
RES=residuals(LC2,"pearson")
base$res=RES
plot(base$A,base$res)
couleur=heat.colors(100)
plot(base$A,base$res,col=couleur[base$Y-1898])
plot(base$Y,base$res,col=couleur[base$A+1])

The graphs can be seen below (as a function of time, and a function of ages)
his Wednesday, we will discuss how we can use those estimators (or other ones) in life insurance…

To leave a comment for the author, please follow the link and comment on their blog: Freakonometrics - Tag - R-english.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...



If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Tags: , , , , , ,

Comments are closed.

Sponsors

Mango solutions



RStudio homepage



Zero Inflated Models and Generalized Linear Mixed Models with R

Quantide: statistical consulting and training



http://www.eoda.de









ODSC

CRC R books series











Contact us if you wish to help support R-bloggers, and place your banner here.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)