Siegel-Tukey: a Non-parametric test for equality in variability (R code)

February 22, 2010
By

(This article was first published on R-statistics blog » R, and kindly contributed to R-bloggers)

Daniel Malter just shared on the R mailing list (link to the thread) his code for performing the Siegel-Tukey (Nonparametric) test for equality in variability.
Excited about the find, I contacted Daniel asking if I could republish his code here, and he kindly replied “yes”.
From here on I copy his note at full.

The R function can be downloaded from here
Corrections and remarks can be added in the comments bellow, or on the github code page.

* * * *

Hi, I recently ran into the problem that I needed a Siegel-Tukey test for equal variability based on ranks. Maybe there is a package that has it implemented, but I could not find it. So I programmed an R function to do it. The Siegel-Tukey test requires to recode the ranks so that they express variability rather than ascending order. This is essentially what the code further below does. After the rank transformation, a regular Mann-Whitney U test is applied. The “manual” and code are pasted below.

Description:  Non-parametric Siegel-Tukey test for equality in variability. The null hypothesis is that the variability of x is equal between two groups. A rejection of the null indicates that variability differs between
the two groups.

Usage:

1
2
3
4
5
# Loading the function
source("http://www.r-statistics.com/wp-content/uploads/2012/01/source_https.r.txt") # Making sure we can source code from github
source_https("https://raw.github.com/talgalili/R-code-snippets/master/siegel.tukey.r")
# Using the function
siegel.tukey(x,y,id.col=FALSE,adjust.median=FALSE,rnd=8, ...)

Arguments:

x: a vector of data

y: Data of the second group (if id.col=FALSE) or group indicator (if id.col=TRUE). In the latter case, y MUST take 1 or 0 to indicate observations of group 1 and 0, respectively, and x must contain the data for both groups.

id.col: If FALSE (default), then x and y are the data vectors (columns) for group 1 and 0, respectively. If TRUE, the y is the group indicator.

adjust.median: Should between-group differences in medians be leveled before performing the test? In certain cases, the Siegel-Tukey test is susceptible to median differences and may indicate significant differences in variability that, in reality, stem from differences in medians.

rnd: Should the data be rounded and, if so, to which decimal? The default (-1) uses the data as is. Otherwise, rnd must be a non-negative integer. Typically, this option is not needed. However, occasionally, differences in
the precision with which certain functions return values cause the merging of two data frames to fail within the siegel.tukey function. Only then  rounding is necessary. This operation should not be performed if it affects
the ranks of observations.

… arguments passed on to the Wilcoxon test. See ?wilcox.test

Value: Among other output, the function returns rank sums for the two groups, the associated Wilcoxon’s W, and the p-value for a Wilcoxon test on tie-adjusted Siegel-Tukey ranks (i.e., it performs and returns a
Siegel-Tukey test). If significant, the group with the smaller rank sum has greater variability.

References: Sidney Siegel and John Wilder Tukey (1960) “A nonparametric sum of ranks procedure for relative spread in unpaired samples.” Journal of the
American Statistical Association. See also, David J. Sheskin (2004) “Handbook of parametric and nonparametric statistical procedures.” 3rd
edition. Chapman and Hall/CRC. Boca Raton, FL.

Notes: The Siegel-Tukey test has relatively low power and may, under certain conditions, indicate significance due to differences in medians rather than
differences in variabilities (consider using the argument adjust.median).

Output (in this order)

1. Group medians
2. Wilcoxon-test for between-group differences in median (after the median
adjustment if specified)
3. Unique values of x and their tie-adjusted Siegel-Tukey ranks
4. Xs of group 0 and their tie-adjusted Siegel-Tukey ranks
5. Xs of group 1 and their tie-adjusted Siegel-Tukey ranks
6. Siegel-Tukey test (Wilcoxon test on tie-adjusted Siegel-Tukey ranks)

The R code:

Update: The R function was moved to github, and corrected from a few mistakes found by some of the sharp readers of this blog. The R function can be downloaded from here

Here is an example of its usage, and output:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
 
######################
# Loading the functions
######################
 
source("http://www.r-statistics.com/wp-content/uploads/2012/01/source_https.r.txt") # Making sure we can source code from github
source_https("https://raw.github.com/talgalili/R-code-snippets/master/siegel.tukey.r")
 
######################
# Examples:
######################
 
### 1
x=c(4,4,5,5,6,6)
y=c(0,0,1,9,10,10)
siegel.tukey(x,y, F)
siegel.tukey(x,y) #same as above
 
### 2
# example for a non equal number of cases:
x=c(4,4,5,5,6,6)
y=c(0,0,1,9,10)
siegel.tukey(x,y,F)
 
### 3
x <- c(33, 62, 84, 85, 88, 93, 97, 4, 16, 48, 51, 66, 98)
id <- c(0,0,0,0,0,0,0,1,1,1,1,1,1)
siegel.tukey(x,id,T)
siegel.tukey(x~id) # from now on, this also works as a function...
siegel.tukey(x,id,T,adjust.median=F,exact=T)
 
### 4
x<-c(177,200,227,230,232,268,272,297,47,105,126,142,158,172,197,220,225,230,262,270)
id<-c(rep(0,8),rep(1,12))
siegel.tukey(x,id,T,adjust.median=T)
 
 
### 5
x=c(33,62,84,85,88,93,97)
y=c(4,16,48,51,66,98) 
siegel.tukey(x,y)
 
### 6
x<-c(0,0,1,4,4,5,5,6,6,9,10,10)
id<-c(0,0,0,1,1,1,1,1,1,0,0,0)
siegel.tukey(x,id,T)
 
### 7
x <- c(85,106,96, 105, 104, 108, 86)
id<-c(0,0,1,1,1,1,1)
siegel.tukey(x,id,T)

Here is the code’s output:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
 
> 
> ### 1
> x=c(4,4,5,5,6,6)
> y=c(0,0,1,9,10,10)
> siegel.tukey(x,y, F)
 
Median of group 1 = 5
Median of group 2 = 5
 
Testing median differences... 
 
        Wilcoxon rank sum test with continuity correction
 
data:  data$x[data$y == 0] and data$x[data$y == 1] 
W = 18, p-value = 1
alternative hypothesis: true location shift is not equal to 0 
 
Performing Siegel-Tukey rank transformation... 
 
   sort.x sort.id unique.ranks
1       0       1          2.5
2       0       1          2.5
3       1       1          5.0
4       4       0          8.5
5       4       0          8.5
6       5       0         11.5
7       5       0         11.5
8       6       0          8.5
9       6       0          8.5
10      9       1          6.0
11     10       1          2.5
12     10       1          2.5
 
Performing Siegel-Tukey test...
 
Mean rank of group 0: 9.5
Mean rank of group 1: 3.5
 
        Wilcoxon rank sum test with continuity correction
 
data:  ranks0 and ranks1 
W = 36, p-value = 0.003601
alternative hypothesis: true location shift is not equal to 0 
 
Warning message:
In wilcox.test.default(data$x[data$y == 0], data$x[data$y == 1]) :
  cannot compute exact p-value with ties
> siegel.tukey(x,y) #same as above
 
Median of group 1 = 4
Median of group 2 = 5
 
Testing median differences... 
 
        Wilcoxon rank sum test with continuity correction
 
data:  data$x[data$y == 0] and data$x[data$y == 1] 
W = 0, p-value = 0.4795
alternative hypothesis: true location shift is not equal to 0 
 
Performing Siegel-Tukey rank transformation... 
 
  sort.x sort.id unique.ranks
1      4       0          2.5
2      4       0          2.5
3      5       1          5.5
4      5       9          5.5
5      6      10          2.5
6      6      10          2.5
 
Performing Siegel-Tukey test...
 
Mean rank of group 0: 2.5
Mean rank of group 1: 5.5
 
        Wilcoxon rank sum test with continuity correction
 
data:  ranks0 and ranks1 
W = 0, p-value = 0.4795
alternative hypothesis: true location shift is not equal to 0 
 
Warning message:
In wilcox.test.default(data$x[data$y == 0], data$x[data$y == 1]) :
  cannot compute exact p-value with ties
> 
> ### 2
> # example for a non equal number of cases:
> x=c(4,4,5,5,6,6)
> y=c(0,0,1,9,10)
> siegel.tukey(x,y,F)
 
Median of group 1 = 5
Median of group 2 = 1
 
Testing median differences... 
 
        Wilcoxon rank sum test with continuity correction
 
data:  data$x[data$y == 0] and data$x[data$y == 1] 
W = 18, p-value = 0.6451
alternative hypothesis: true location shift is not equal to 0 
 
Performing Siegel-Tukey rank transformation... 
 
   sort.x sort.id unique.ranks
1       0       1          2.5
2       0       1          2.5
3       1       1          5.0
4       4       0          8.5
5       4       0          8.5
6       5       0         10.5
7       5       0         10.5
8       6       0          6.5
9       6       0          6.5
10      9       1          3.0
11     10       1          2.0
 
Performing Siegel-Tukey test...
 
Mean rank of group 0: 8.5
Mean rank of group 1: 3
 
        Wilcoxon rank sum test with continuity correction
 
data:  ranks0 and ranks1 
W = 30, p-value = 0.007546
alternative hypothesis: true location shift is not equal to 0 
 
Warning message:
In wilcox.test.default(data$x[data$y == 0], data$x[data$y == 1]) :
  cannot compute exact p-value with ties
> 
> ### 3
> x <- c(33, 62, 84, 85, 88, 93, 97, 4, 16, 48, 51, 66, 98)
> id <- c(0,0,0,0,0,0,0,1,1,1,1,1,1)
> siegel.tukey(x,id,T)
 
Median of group 1 = 85
Median of group 2 = 49.5
 
Testing median differences... 
 
        Wilcoxon rank sum test
 
data:  data$x[data$y == 0] and data$x[data$y == 1] 
W = 31, p-value = 0.1807
alternative hypothesis: true location shift is not equal to 0 
 
Performing Siegel-Tukey rank transformation... 
 
   sort.x sort.id unique.ranks
1       4       1            1
2      16       1            4
3      33       0            5
4      48       1            8
5      51       1            9
6      62       0           12
7      66       1           13
8      84       0           11
9      85       0           10
10     88       0            7
11     93       0            6
12     97       0            3
13     98       1            2
 
Performing Siegel-Tukey test...
 
Mean rank of group 0: 7.714286
Mean rank of group 1: 6.166667
 
        Wilcoxon rank sum test with continuity correction
 
data:  ranks0 and ranks1 
W = 26, p-value = 0.5203
alternative hypothesis: true location shift is not equal to 0 
 
> siegel.tukey(x~id) # from now on, this also works as a function...
 
Median of group 1 = 85
Median of group 2 = 49.5
 
Testing median differences... 
 
        Wilcoxon rank sum test
 
data:  data$x[data$y == 0] and data$x[data$y == 1] 
W = 31, p-value = 0.1807
alternative hypothesis: true location shift is not equal to 0 
 
Performing Siegel-Tukey rank transformation... 
 
   sort.x sort.id unique.ranks
1       4       1            1
2      16       1            4
3      33       0            5
4      48       1            8
5      51       1            9
6      62       0           12
7      66       1           13
8      84       0           11
9      85       0           10
10     88       0            7
11     93       0            6
12     97       0            3
13     98       1            2
 
Performing Siegel-Tukey test...
 
Mean rank of group 0: 7.714286
Mean rank of group 1: 6.166667
 
        Wilcoxon rank sum test with continuity correction
 
data:  ranks0 and ranks1 
W = 26, p-value = 0.5203
alternative hypothesis: true location shift is not equal to 0 
 
> siegel.tukey(x,id,T,adjust.median=F,exact=T)
 
Median of group 1 = 85
Median of group 2 = 49.5
 
Testing median differences... 
 
        Wilcoxon rank sum test
 
data:  data$x[data$y == 0] and data$x[data$y == 1] 
W = 31, p-value = 0.1807
alternative hypothesis: true location shift is not equal to 0 
 
Performing Siegel-Tukey rank transformation... 
 
   sort.x sort.id unique.ranks
1       4       1            1
2      16       1            4
3      33       0            5
4      48       1            8
5      51       1            9
6      62       0           12
7      66       1           13
8      84       0           11
9      85       0           10
10     88       0            7
11     93       0            6
12     97       0            3
13     98       1            2
 
Performing Siegel-Tukey test...
 
Mean rank of group 0: 7.714286
Mean rank of group 1: 6.166667
 
        Wilcoxon rank sum test
 
data:  ranks0 and ranks1 
W = 26, p-value = 0.5338
alternative hypothesis: true location shift is not equal to 0 
 
> 
> ### 4
> x<-c(177,200,227,230,232,268,272,297,47,105,126,142,158,172,197,220,225,230,262,270)
> id<-c(rep(0,8),rep(1,12))
> siegel.tukey(x,id,T,adjust.median=T)
 
Adjusting medians...
 
Median of group 1 = 0
Median of group 2 = 0
 
Testing median differences... 
 
        Wilcoxon rank sum test
 
data:  data$x[data$y == 0] and data$x[data$y == 1] 
W = 52, p-value = 0.7921
alternative hypothesis: true location shift is not equal to 0 
 
Performing Siegel-Tukey rank transformation... 
 
   sort.x sort.id unique.ranks
1  -137.5       1            1
2   -79.5       1            4
3   -58.5       1            5
4   -54.0       0            8
5   -42.5       1            9
6   -31.0       0           12
7   -26.5       1           13
8   -12.5       1           16
9    -4.0       0           17
10   -1.0       0           20
11    1.0       0           19
12   12.5       1           18
13   35.5       1           15
14   37.0       0           14
15   40.5       1           11
16   41.0       0           10
17   45.5       1            7
18   66.0       0            6
19   77.5       1            3
20   85.5       1            2
 
Performing Siegel-Tukey test...
 
Mean rank of group 0: 13.25
Mean rank of group 1: 8.666667
 
        Wilcoxon rank sum test with continuity correction
 
data:  ranks0 and ranks1 
W = 70, p-value = 0.09716
alternative hypothesis: true location shift is not equal to 0 
 
> 
> 
> ### 5
> x=c(33,62,84,85,88,93,97)
> y=c(4,16,48,51,66,98) 
> siegel.tukey(x,y)
Error in data.frame(x, y) : 
  arguments imply differing number of rows: 7, 6
> 
> ### 6
> x<-c(0,0,1,4,4,5,5,6,6,9,10,10)
> id<-c(0,0,0,1,1,1,1,1,1,0,0,0)
> siegel.tukey(x,id,T)
 
Median of group 1 = 5
Median of group 2 = 5
 
Testing median differences... 
 
        Wilcoxon rank sum test with continuity correction
 
data:  data$x[data$y == 0] and data$x[data$y == 1] 
W = 18, p-value = 1
alternative hypothesis: true location shift is not equal to 0 
 
Performing Siegel-Tukey rank transformation... 
 
   sort.x sort.id unique.ranks
1       0       0          2.5
2       0       0          2.5
3       1       0          5.0
4       4       1          8.5
5       4       1          8.5
6       5       1         11.5
7       5       1         11.5
8       6       1          8.5
9       6       1          8.5
10      9       0          6.0
11     10       0          2.5
12     10       0          2.5
 
Performing Siegel-Tukey test...
 
Mean rank of group 0: 3.5
Mean rank of group 1: 9.5
 
        Wilcoxon rank sum test with continuity correction
 
data:  ranks0 and ranks1 
W = 0, p-value = 0.003601
alternative hypothesis: true location shift is not equal to 0 
 
Warning message:
In wilcox.test.default(data$x[data$y == 0], data$x[data$y == 1]) :
  cannot compute exact p-value with ties
> 
> ### 7
> x <- c(85,106,96, 105, 104, 108, 86)
> id<-c(0,0,1,1,1,1,1)
> siegel.tukey(x,id,T)
 
Median of group 1 = 95.5
Median of group 2 = 104
 
Testing median differences... 
 
        Wilcoxon rank sum test
 
data:  data$x[data$y == 0] and data$x[data$y == 1] 
W = 4, p-value = 0.8571
alternative hypothesis: true location shift is not equal to 0 
 
Performing Siegel-Tukey rank transformation... 
 
  sort.x sort.id unique.ranks
1     85       0            1
2     86       1            4
3     96       1            5
4    104       1            7
5    105       1            6
6    106       0            3
7    108       1            2
 
Performing Siegel-Tukey test...
 
Mean rank of group 0: 2
Mean rank of group 1: 4.8
 
        Wilcoxon rank sum test with continuity correction
 
data:  ranks0 and ranks1 
W = 1, p-value = 0.1752
alternative hypothesis: true location shift is not equal to 0

To leave a comment for the author, please follow the link and comment on his blog: R-statistics blog » R.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...



If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Tags: , , , , , , , , , ,

Comments are closed.