2206 search results for "regression"

How to export Regression results from R to MS Word

March 15, 2016
By
How to export Regression results from R to MS Word

In this post I will present a simple way how to export your regression results (or output) from R into Microsoft Word. Previously, I have written a tutorial how to create Table 1 with study characteristics and to export into Microsoft Word. These posts are especially useful for researchers who prepare their manuscript for publication Related Post

Read more »

First steps with Non-Linear Regression in R

February 25, 2016
By
First steps with Non-Linear Regression in R

Drawing a line through a cloud of point (ie doing a linear regression) is the most basic analysis one may do. It is sometime fitting well to the data, but in some (many) situations, the relationships between variables are not linear. In this case one may follow three different ways: (i) try to linearize the

Read more »

Multiple regression lines in ggpairs

February 16, 2016
By
Multiple regression lines in ggpairs

Abstract Plots including multiple regression lines are added to a matrix of plots generated with the GGally package in R.1 Background Built upon ggplot2, GGally provides templates for combining plots into a matrix through the ggpairs function. Such...

Read more »

Linear regression with random error giving EXACT predefined parameter estimates

January 26, 2016
By
Linear regression with random error giving EXACT predefined parameter estimates

When simulating linear models based on some defined slope/intercept and added gaussian noise, the parameter estimates vary after least-squares fitting. Here is some code I developed that does a double transform of these models as to obtain a fitted model with EXACT defined parameter estimates a (intercept) and b (slope). It does so by: 1)

Read more »

Bayesian regression with STAN Part 2: Beyond normality

January 26, 2016
By
Bayesian regression with STAN Part 2: Beyond normality

In a previous post we saw how to perform bayesian regression in R using STAN for normally distributed data. In this post we will look at how to fit non-normal model in STAN using three example distributions commonly found in empirical data: negative-binomial (overdispersed poisson data), gamma (right-skewed continuous data) and beta-binomial (overdispersed binomial data).

Read more »

How to create confounders with regression: a lesson from causal inference

January 25, 2016
By
How to create confounders with regression: a lesson from causal inference

By Ben Ogorek Introduction Regression is a tool that can be used to address causal questions in an observational study, though no one said it would be easy. While this article won't close the vexing gap between correlation and causation, it will offer specific advice when you're after a causal truth - keep an eye out for...

Read more »

Bayesian regression with STAN: Part 1 normal regression

January 8, 2016
By
Bayesian regression with STAN: Part 1 normal regression

This post will introduce you to bayesian regression in R, see the reference list at the end of the post for further information concerning this very broad topic. Bayesian regression Bayesian statistics turn around the Bayes theorem, which in a regression context is the following: $$ P(theta|Data) propto P(Data|theta) times P(theta) $$ Where (theta) is

Read more »

Regression with Splines: Should we care about Non-Significant Components?

January 4, 2016
By
Regression with Splines: Should we care about Non-Significant Components?

Following the course of this morning, I got a very interesting question from a student of mine. The question was about having non-significant components in a splineregression.  Should we consider a model with a small number of knots and all components significant, or one with a (much) larger number of knots, and a lot of knots non-significant? My initial intuition was to...

Read more »

Using segmented regression to analyse world record running times

December 30, 2015
By
Using segmented regression to analyse world record running times

by Andrie de Vries A week ago my high school friend, @XLRunner, sent me a link to the article "How Zach Bitter Ran 100 Miles in Less Than 12 Hours". Zach's effort was rewarded with the American record for the 100 mile event. Zach Bitter holds the American record for the 100 mile This reminded me of some analysis...

Read more »

Regression Diagnostic Plots using R and Plotly

December 25, 2015
By
Regression Diagnostic Plots using R and Plotly

Plotly is a platform for making, editing, and sharing customizable and interactive graphs. Embedding Plotly graphs in a R-Markdown document is very easy. Here, we will genarate a R-Markdown document with embedded Plotly charts to visualize regression diagnostic plots similar to the ones generated by using plot() on a fitted lm() object. R-Studio First step

Read more »

Sponsors

Mango solutions



RStudio homepage



Zero Inflated Models and Generalized Linear Mixed Models with R

Quantide: statistical consulting and training



http://www.eoda.de







ODSC

ODSC

CRC R books series











Contact us if you wish to help support R-bloggers, and place your banner here.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)