Oracle R Connector for Hadoop 2.2.0 is now available for download. The Oracle R Connector for Hadoop 2.x series has introduced numerous enhancements, which are highlighted in this article and summarized as follows: ORCH 2.0.0 ORCH 2.1.0 ORCH...

Oracle R Connector for Hadoop 2.2.0 is now available for download. The Oracle R Connector for Hadoop 2.x series has introduced numerous enhancements, which are highlighted in this article and summarized as follows: ORCH 2.0.0 ORCH 2.1.0 ORCH...

I was recently completing some professional development activities that required me to write a report on a self-chosen topic related to diversity in student backgrounds. I chose to use the opportunity to reflect on the potential for using R to teach psychology students research methods. I thought I'd share the report in case it interests anyone. Abstract...

Supposons que l'on dispose d'iris de Paris (en population >100khabts) et qu'on veuille pouvoir les classer selon leurs caractéristiques sociodémos : Population taux de chômage Etudiants CSP etc... Une fois, les iris classés, on se demande si l'on peut transporter cette typologie à une autre grande ville (Lyon) par exemple : Il faudrait alors pouvoir utiliser un modèle d'affectation des iris selon leurs caractéristiques respectives...

Heatmaps are a great way to visualize data matrices. Heatmap color and organization can be used to encode information about the data and metadata to help learn about the data at hand. An example of this could be looking at the raw data or hierarchically clustering samples and variables based on their similarity or differences.

R and Python have different strengths. There's little you can do in R you absolutely can't do in Python and vice versa, but there's a lot of stuff that's really annoying in one and nice and simple in the other. I'm sure simulations can be run in R, but it seems frightfully tricky. Recently I wrote a simple Tennis simulator...

PCA is a very common method for exploration and reduction of high-dimensional data. It works by making linear combinations of the variables that are orthogonal, and is thus a way to change basis to better see patterns in data. You either do spectral decomposition of the correlation matrix or singular value decomposition of the data

I’ve recently started experimenting with making Shiny apps, and today I wanted to make a basic app for calculating and visualizing principal components analysis (PCA). Here is the basic interface I came up with. Test drive the app for yourself using the code below or check out the the R code HERE. Above is an example of the

Last time when I read the paper “A General Regression Neural Network” by Donald Specht, it was exactly 10 years ago when I was in the graduate school. After reading again this week, I decided to code it out with SAS macros and make this excellent idea available for the SAS community. The prototype of