Consider a (simple) Poisson regression . Given a sample where , the goal is to derive a 95% confidence interval for given , where is the prediction. Hence, we want to derive a confidence interval for the prediction, not the potential observation...

Consider a (simple) Poisson regression . Given a sample where , the goal is to derive a 95% confidence interval for given , where is the prediction. Hence, we want to derive a confidence interval for the prediction, not the potential observation, i.e. the dot on the graph below > r=glm(dist~speed,data=cars,family=poisson) > P=predict(r,type="response", + newdata=data.frame(speed=seq(-1,35,by=.2))) > plot(cars,xlim=c(0,31),ylim=c(0,170)) > abline(v=30,lty=2)...

The Omega Ratio was introduced by Keating and Shadwick in 2002. It measures the ratio of average portfolio wins over average portfolio losses for a given target return L. Let x.i, i= 1,…,n be weights of instruments in the portfolio. We suppose that j= 1,…,T scenarios of returns with equal probabilities are available. I will

Recently, I've been preparing a poster using the LaTeX packages Beamer and beamerposter. The poster discusses a bunch of R stuff that I've been doing lately, so I successfully used Sweave to incorporate R code into the poster. However, I had some troub...

For this years Halloween I presented the mathematical biology seminar at the Centre for Mathematical Biology. Here is the title and the abstract… Cycles in finite populations: a reproducible seminar in three acts Many natural populations exhibit cyclic fluctuations. Explaining the underlying … Continue reading →

I bought an Android phone, nothing fancy just my first foray in the smartphone world, which is a big change coming from the dumb phone world(*). Everything is different and I am back at being a newbie; this is what … Continue reading →

In the Maximum Loss and Mean-Absolute Deviation risk measures, and Expected shortfall (CVaR) and Conditional Drawdown at Risk (CDaR) posts I started the discussion about alternative risk measures we can use to construct efficient frontier. Another alternative risk measure I want to discuss is Downside Risk. In the traditional mean-variance optimization both returns above and

Everyday, a poor soul tries to understand copulas by reading the corresponding Wikipedia page, and gives up in despair. The incomprehensible mess that one finds there gives the impression that copulas are about as accessible as tensor theory, which is a shame, because they are actually a very nice tool. The only prerequisite is knowing