Scheduled Parallel Computing with R: R + Rmpi + OpenMPI + Sun Grid Engine (SGE)

January 20, 2010

(This article was first published on Super Nerdy Cool » R, and kindly contributed to R-bloggers)

Recently I’ve learned how to do parallel computing in R on a cluster of machines thanks to the R packages snowfall, snow, and Rmpi. I’ve been using the SOCKET method with snowfall since together they make things simple. With these tools, I can reduce day/week long jobs to hours or a day across many (100) cores/cpus.

However, system admins would prefer me to do things using the sun grid engine (sge) or one of their job scheduler since clusters are usually a shared resource and having “rogue” jobs like mine that hog all the resources aren’t really a good thing. Aside from scheduling jobs, another great thing about SGE is that it determines which nodes to use (idle?) with R so I don’t have to determine the list of nodes.

Luckily, people have attacked this problem already. First, Revolutions Computing has an internal document that gives instructions on how to install R, Rmpi, OpenMPI, and SGE to get them to work together. If you email them and ask for it, they are more than willing to share it. The document is “sge-snow.pdf.” After things are installed, here is how to get things to work.

Rmpi with OpenMPI and SGE via qsub:

First, copy the content of Rprofile that is packaged in Rmpi into ~/.Rprofile.
Place the following in a shell script to be submitted by qsub (an example script is at the end):

mpirun -np 51 R --no-save -q < SGEtest.R > SGEtest.Rout

NOTE: 51 is the number of cores/cpus to use, 1 master + 50 slaves. Inside the R script, do not use anything that belongs to snow or
snowfall. Just use Rmpi’s functions. Also, by using mpirun, we do
NOT need to spawn slaves as they are spawned in the mpirun command.
We also do not need to call library(Rmpi). Put the following in the R
script (SGEtest.R) to see that things are running:

mpi.remote.exec(paste("I am",mpi.comm.rank(),"of",mpi.comm.size()))
mpi.remote.exec(paste("I am",[c("nodename")],"of",mpi.comm.size()))

snow with OpenMPI and SGE via qsub:

First, place the location of the executable RMPISNOW from the snow
package in the PATH variable (or use the direct location wherever you
see RMPISNOW in the command line). DO NOT put the Rprofile from Rmpi
into ~/.Rprofile. Place the following in the shell script to be
submitted by qsub:

mpirun -np 21 RMPISNOW < SGEtest2.R > SGEtest2.Rout

In the R script, use only snow functions (not Rmpi or snowfall). No
need to call library(snow). Put the following in the R script (SGEtest2.R) to

cl <- makeCluster()
print(clusterCall(cl, function()

snow with OpenMPI and SGE via qrsh (interactive)

Similar to 2, but run

qrsh -V -q int64 mpirun -np 9 RMPISNOW

instead of the qsub command to get an interactive session.

Sample script for SGE

For the first two cases, a sample script is:


# here's the SGE directives
# ------------------------------------------
#$ -q longbat-adc   # <- the name of the Q you want to submit to
#$ -pe openmpi 51  #  <- load the openmpi parallel env w/ 4 slots
#$ -S /bin/bash   # <- run the job under bash
#$ -N MPI-SGE # <- name of the job in the qstat output
#$ -o MPI-SGE.out # <- name of the output file.
#$ -e MPI-SGE.stderr # <- name of the stderr file.

module load R/2.10.0
echo "calling mpirun now"
## mpirun -np 51 R --no-save -q < SGEtest.R > SGEtest.Rout
mpirun -np 21 RMPISNOW < SGEtest2.R > SGEtest2.Rout
## call via: qsub

Finally, I would like to point out that currently snowfall does not yet work with SGE because it requires a call to sfInit(), and this conflicts with the cluster called from mpirun. This made me learn some functions from snow, which aren’t all that much different from snowfall.

Also, there is an rsge package for R that seems to work too.

UPDATE 1/25/2010

  1. We don’t need to specify -np 51 in the mpirun command. If we omit it, SGE passes this information directly to OpenMPI.
  2. I tried installing this myself. A few things to note are:
    a. compile OpenMPI with the –with-sge flag.
    b. Place the bin directory of OpenMPI in PATH if it is installed in a non-standard placed. Also, remember to place the directory where RMPISNOW resides into PATH as well.
    c. install Rmpi: R CMD INSTALL Rmpi_0.5-8.tar.gz –lib=~/Rlib –configure-args=”–with-mpi=/home/vqnguyen/openmpi-1.4.1-vqn/” OR specify MPI_ROOT environment variable as /home/vqnguyen/openmpi-1.4.1-vqn/.
    d. Place “export LD_LIBRARY_PATH=/path/to/libmpifolder:$LD_LIBRARY_PATH” in .bashrc if the variable does not include it. This is required for library(Rmpi) to work. Also place “.libPaths(“~/Rlib”)” in RMPISNOWprofile in order to see where my Rmpi is.
    e. Set up a parallel environment in SGE either with qmon or on the command line with:
    $ qconf -Ap openmpi.config
    where the config file is as follow:
openmpi configuration:
pe_name            openmpi
slots              666
user_lists         arusers
xuser_lists        NONE
start_proc_args    /bin/true
stop_proc_args     /bin/true
allocation_rule    $round_robin
control_slaves     TRUE
job_is_first_task  FALSE
urgency_slots      min
accounting_summary TRUE

You can name the PE anything and set the number slots. Make sure the user list has you in it. Also, make sure you add the Q’s u want to work with into this PE.
3. specifying an outfile in the makeCluster() command in RMPISNOW doesn’t do anything since the cluster is called at the RMPISNOW’s invocation. If we look at the RMPISNOWprofile, we see that the output is sink to /dev/null. I tried a few ways to get the workers’ output out, via sink() on each worker via clusterEvalQ or setting the OUT or R_SNOW_OUTFILE variables (see RMPInode.R and How I got it to work was with:

clusterEvalQ(cl, sinkWorkerOutput("nodes.out"))
  1. Of course, make sure u have passwordless ssh on. If you have host key messages (ie, type yes to accept key) and your job doesnt run, put

StrictHostKeyChecking no

in ~/.ssh/config according to this page. Check the stderr of your SGE log.

To leave a comment for the author, please follow the link and comment on their blog: Super Nerdy Cool » R. offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...

If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Tags: , , , , , , , , , , , , , , , ,

Comments are closed.

Recent popular posts


Mango solutions

RStudio homepage

Zero Inflated Models and Generalized Linear Mixed Models with R

Dommino data lab

Quantide: statistical consulting and training



CRC R books series

Six Sigma Online Training

Contact us if you wish to help support R-bloggers, and place your banner here.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)