Reserving based on log-incremental payments in R, part II

January 15, 2013

(This article was first published on mages' blog, and kindly contributed to R-bloggers)

Following on from last week's post I will continue to go through the paper Regression models based on log-incremental payments by Stavros Christofides [1]. In the previous post I introduced the model from the first 15 pages up to section F. Today I will progress with sections G to K which illustrate the model with a more realistic incremental claims payments triangle from a UK Motor Non-Comprehensive account:

# Page D5.17
tri <- t(matrix(
c(3511, 3215, 2266, 1712, 1059, 587, 340,
4001, 3702, 2278, 1180, 956, 629, NA,
4355, 3932, 1946, 1522, 1238, NA, NA,
4295, 3455, 2023, 1320, NA, NA, NA,
4150, 3747, 2320, NA, NA, NA, NA,
5102, 4548, NA, NA, NA, NA, NA,
6283, NA, NA, NA, NA, NA, NA), nc=7))

The rows show origin period data, e.g. accident years, underwriting years or years of account and the columns present the development periods or lags. The triangle appears to be fairly well behaved. The last two years in rows 6 and 7 appear to be slightly higher than rows 2 to 5 and the values in row 1 are lower in comparison to the later years. The last payment of £1,238 in the third row stands out a bit as well.

Before I plot the data, I will transform the triangle into a data frame and add extra columns:

m <- dim(tri)[1]; n <- dim(tri)[2]
dat <- data.frame(
origin=rep(0:(m-1), n),
dev=rep(0:(n-1), each=m),

## Add dimensions as factors
dat <- with(dat, data.frame(origin, dev, cal=origin+dev,
value, logvalue=log(value),

I am particularly interested in the decay of claims payments in the development year direction for each origin year on the original and log-scale. The interaction.plot of the stats package does an excellent job for this:

op <- par(mfrow=c(2,1), mar=c(4,4,2,2))
with(dat, interaction.plot(x.factor=dev, trace.factor=origin,
points(dat$devf, dat$value, pch=16, cex=0.5)
with(dat, interaction.plot(x.factor=dev, trace.factor=origin,
points(dat$devf, dat$logvalue, pch=16, cex=0.5)

Indeed the origin years 1 to 4 (rows 2 to 5) look quite similar and the decay of claims in development year direction appears to be linear on a log-scale from development year 1 onwards.

Based on those observations Christofides suggests two models; the first one will have a unique level for each origin year and a unique level for the zero development period. The parameters for development periods 1 to 6 are assumed to follow a linear relationship with the same slope \(s\):
\ln(P_{ij}) & = Y_{ij} = a_i + d_j + \epsilon_{ij}
&\mbox{for } i,\,j \mbox{ from } 0 \mbox{ to } 6\\
\mbox{where } d_0 &= d,\quad d_j = s \cdot j
&\mbox{for } j > 0
\end{align}and \(\epsilon_{ij} \sim N(0, \sigma^2)\). The second model will be a reduced version of the above with only two levels for the origin years 5 and 6. Hence, I add four more columns to my data frame:Read more »

To leave a comment for the author, please follow the link and comment on their blog: mages' blog. offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...

If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.


Mango solutions

RStudio homepage

Zero Inflated Models and Generalized Linear Mixed Models with R

Quantide: statistical consulting and training


CRC R books series

Contact us if you wish to help support R-bloggers, and place your banner here.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)