A short tutorial on doing intersections in R GIS. gIntersection{rgeos} will pick the polygons of the first submitted polygon contained within the second poylgon – this is done without cutting the polygon’s edges which cross the clip source polygon. For the function that I use to download the example data, url_shp_to_spdf() please see HERE.

library(rgeos)

library(dismo)

URLs <- c("http://gis.tirol.gv.at/ogd/umwelt/wasser/wis_gew_pl.zip", # all water bodies in Tyrol

"http://gis.tirol.gv.at/ogd/umwelt/wasser/wis_tseepeicher_pl.zip") # only artificial..

y <- lapply(URLs, url_shp_to_spdf)

z <- unlist(unlist(y))

a <- getData('GADM', country = "AT", level = 2)

b <- a[a$NAME_2=="Innsbruck Land", ] # political district's boundaries

c <- spTransform(b, z[[1]]@proj4string)

z1_c <- gIntersection(z[[1]], c, byid = TRUE)

z2_c <- gIntersection(z[[2]], c, byid = TRUE)

plot(c)

plot(z1_c, lwd = 5, border = "red", add = T)

plot(z2_c, lwd = 5, border = "green", add = T)

plot(z[[1]], border = "blue", add = T) # I plot this on top, so it will be easier to identify

plot(z[[2]], border = "brown", add = T)

*Related*

To

**leave a comment** for the author, please follow the link and comment on his blog:

** theBioBucket***.

R-bloggers.com offers

**daily e-mail updates** about

R news and

tutorials on topics such as: visualization (

ggplot2,

Boxplots,

maps,

animation), programming (

RStudio,

Sweave,

LaTeX,

SQL,

Eclipse,

git,

hadoop,

Web Scraping) statistics (

regression,

PCA,

time series,

trading) and more...

If you got this far, why not

__subscribe for updates__ from the site? Choose your flavor:

e-mail,

twitter,

RSS, or

facebook...