project-euler–problem 65

September 16, 2012
By

(This article was first published on YGC » R, and kindly contributed to R-bloggers)

The square root of 2 can be written as an infinite continued fraction.
$\sqrt{2} = 1+\frac{1}{2+\frac{1}{2+\frac{1}{2+\frac{1}{2+?}}}}$

The infinite continued fraction can be written, √2 = [1;(2)], (2) indicates that 2 repeats ad infinitum. In a similar way, √23 = [4;(1,3,1,8)].

It turns out that the sequence of partial values of continued fractions for square roots provide the best rational approximations. Let us consider the convergents for √2.

$1+\frac{1}{2} = 3/2$
$1+\frac{1}{2+\frac{1}{2}} = 7/5$
$1+\frac{1}{2+\frac{1}{2+\frac{1}{2}}} = 17/12$
$1+\frac{1}{2+\frac{1}{2+\frac{1}{2+\frac{1}{2}}}} = 41/29$

Hence the sequence of the first ten convergents for √2 are:
1, 3/2, 7/5, 17/12, 41/29, 99/70, 239/169, 577/408, 1393/985, 3363/2378, …

What is most surprising is that the important mathematical constant,
e = [2; 1,2,1, 1,4,1, 1,6,1 , … , 1,2k,1, …].

The first ten terms in the sequence of convergents for e are:
2, 3, 8/3, 11/4, 19/7, 87/32, 106/39, 193/71, 1264/465, 1457/536, …

The sum of digits in the numerator of the 10th convergent is 1+4+5+7=17.

Find the sum of digits in the numerator of the 100th convergent of the continued fraction for e.

?View Code RSPLUS
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  e.expand <- function(n) { e0 <- 2 e <- c(1,2,1) add <- c(0,2,0)   len <- floor(n/3)-1 x <- sapply(0:len, function(i) add * i) + e x <- as.vector(x) res <- c(e0, x) return(res) }   get.fraction <- function(x) { ## 1/(x0 + a/x1) n <- length(x) x1 <- x[n-1] * x[n-2] + 1 a <- x[n-2]   for (i in (n-2):1) { old.x1 <- x1; x1 <- x[i] * x1 + a a <- old.x1 } res <- list(numerator=x1, denumerator=a) return (res) }   e <- e.expand(100) res <- get.fraction(e) numerator <- as.character(gmp::as.bigz(res\$numerator)) s <- sum(as.numeric(unlist(strsplit(numerator, "")))) print(s)

Related Posts

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...

If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Recent popular posts

Contact us if you wish to help support R-bloggers, and place your banner here.

Never miss an update! Subscribe to R-bloggers to receive e-mails with the latest R posts.(You will not see this message again.)

Click here to close (This popup will not appear again)