MAT886 mean excess function (and reinsurance)

February 1, 2012
By

(This article was first published on Freakonometrics - Tag - R-english, and kindly contributed to R-bloggers)

Tomorrow, in the course on extreme value, we will focus on applications. We will discuss reinsurance pricing. Consider a random variable http://freakonometrics.blog.free.fr/public/perso5/mef01.gif, a threshold http://freakonometrics.blog.free.fr/public/perso5/mef.gif and define

http://freakonometrics.blog.free.fr/public/perso5/mef02.gif


the mean excess function. This function is known in life insurance as the average remaining life time of someone alive at age http://freakonometrics.blog.free.fr/public/perso5/mef.gif. This function can be written

http://freakonometrics.blog.free.fr/public/perso5/mef03.gif

For instance, if has a Generalized Pareto Distribution (GPD),

http://freakonometrics.blog.free.fr/public/perso5/mef08.gif

the mean excess function is linear in http://freakonometrics.blog.free.fr/public/perso5/mef.gif,

http://freakonometrics.blog.free.fr/public/perso5/mef10.gif

A natural estimator for that function is the empirical average of observations exceeding the threshold,

http://freakonometrics.blog.free.fr/public/perso5/mef13.gif

If http://freakonometrics.blog.free.fr/public/perso5/mef11.gif denotes an order statistics, it is possible to calculate that quantity in those specific values. Set

http://freakonometrics.blog.free.fr/public/perso5/mef06.gif

It is possible to plot http://freakonometrics.blog.free.fr/public/perso5/mef04.gif. If the points are on a straight line, then the GPD should be an appropriate model,

> set.seed(100)
> b=1;xi=.5
> n=1000
> X=sort(b/xi*((1-runif(n))^(-xi)-1))
> e=function(u){mean(X[X>=u]-u)}
> E=Vectorize(e)
> plot(X[-n],E(X[-n]))
> abline(b/(1-xi),xi/(1-xi),col="red")

We can also use directly cumulated sums on order statistics,

> plot(rev(X),cumsum(rev(X))/1:n-rev(X),col="blue")
> abline(b/(1-xi),xi/(1-xi),col="red")

Nevertheless, that estimator are not very robust. If we generate not one, but 5,000 samples, we obtain almost everything,

with below in (dark) blue monte carlo confidence 90% confidence intervals. Nevertheless, this quantity is extremely popular in reinsurance, and is used under the name “burning cost“.

To leave a comment for the author, please follow the link and comment on their blog: Freakonometrics - Tag - R-english.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...



If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Tags: , , , , , , , ,

Comments are closed.

Sponsors

Mango solutions



RStudio homepage



Zero Inflated Models and Generalized Linear Mixed Models with R

Dommino data lab

Quantide: statistical consulting and training



http://www.eoda.de







ODSC

ODSC

CRC R books series





Six Sigma Online Training





Contact us if you wish to help support R-bloggers, and place your banner here.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)