# Le Monde puzzle [#822]

June 10, 2013
By

(This article was first published on Xi'an's Og » R, and kindly contributed to R-bloggers)

For once Le Monde math puzzle is much more easily solved on a piece of paper than in R, even in a plane from Roma:

Given a partition of the set {1,…,N} in k groups, one considers the collection of all subsets of  the set {1,…,N} containing at least one element from each group. Show that the size of the collection cannot be 50.

Obviously, one could consider a range of possible N’s and k’s and run a program evaluating the sizes of the corresponding collections. However, if the k groups are of size n1,…,nk, the number of subsets satisfying the condition is

$(2^{n_1}-1)\times \ldots \times (2^{n_k}-1)$

and it is easily shown by induction that this number is necessarily odd, hence the impossible 50.

Filed under: Books, Kids, R Tagged: combinatorics, induction, Le Monde, mathematical puzzle, odd numbers, partition, R

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...