(This article was first published on

**Xi'an's Og » R**, and kindly contributed to R-bloggers)**F**or once Le Monde math puzzle is much more easily solved on a piece of paper than in R, even in a plane from Roma:

Given a partition of the set {1,…,N} in k groups, one considers the collection of all subsets ofthe set {1,…,N} containing at least one element from each group. Show that the size of the collection cannot be 50.

**O**bviously, one could consider a range of possible N’s and k’s and run a program evaluating the sizes of the corresponding collections. However, if the k groups are of size n_{1},…,n_{k}, the number of subsets satisfying the condition is

and it is easily shown by induction that this number is necessarily odd, hence the impossible 50.

Filed under: Books, Kids, R Tagged: combinatorics, induction, Le Monde, mathematical puzzle, odd numbers, partition, R

To

**leave a comment**for the author, please follow the link and comment on his blog:**Xi'an's Og » R**.R-bloggers.com offers

**daily e-mail updates**about R news and tutorials on topics such as: visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...