Introduction to R for Life Scientists: Course Materials

July 7, 2014

(This article was first published on Getting Genetics Done, and kindly contributed to R-bloggers)

Last week I taught a three-hour introduction to R workshop for life scientists at UVA’s Health Sciences Library.

I broke the workshop into three sections:

In the first half hour or so I presented slides giving an overview of R and why R is so awesome. During this session I emphasized reproducible research and gave a demonstration of using knitr + rmarkdown in RStudio to produce a PDF that can easily be recompiled when data updates.

In the second (longest) section, participants had their laptops out with RStudio open coding along with me as I gave an introduction to R data types, functions, getting help, data frames, subsetting, and plotting. Participants were challenged with an exercise requiring them to create a scatter plot using a subset of the built-in mtcars dataset.

We concluded with an analysis of RNA-seq data using the DESeq2 package. We started with a count matrix and a metadata file (the modENCODE pasilla knockout data packaged with DESeq2), imported the data into a DESeqDataSet object, ran the DESeq pipeline, extracted results, and did some basic visualization (MA-plots, PCA, volcano plots, etc). A future day-long course will cover RNA-seq in more detail (intro UNIX, alignment, & quantitation in the morning; intro R, QC, and differential expression analysis in the afternoon).

I wrote the course materials using knitr, rendered using Jekyll, hosted as a GitHub project page. The rendered course materials can be found at the link below, and the source is on GitHub.

Course Materials: Introduction to R for Life Scientists


Cheat Sheet:

To leave a comment for the author, please follow the link and comment on their blog: Getting Genetics Done. offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...

If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.


Mango solutions

RStudio homepage

Zero Inflated Models and Generalized Linear Mixed Models with R

Quantide: statistical consulting and training


CRC R books series

Contact us if you wish to help support R-bloggers, and place your banner here.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)