Categorizing my expenses

January 28, 2012

(This article was first published on factbased, and kindly contributed to R-bloggers)

In order to analyse my expenses, a classification scheme is necessary. I need to identify categories that are meaningful to me. I decided to go with the “Classification of Individual Consumption by Purpose” (COICOP), for three reasons:

  • It is made by people who have thought more about consumption classification than I ever will.
  • It is feasible to assign bank transactions and tracked cash spendings to one of the 12 top level categories.
  • It is widely used by statistics divisions, e.g. the Federal Statistical Office of Germany, Eurostat, and the UN. This means I can do social comparisons: In which categories do I spend more money than the average? Do the prices I pay rise faster than the price indices suggest?

So I classified my last year’s expense data according to COICOP. Here is a chart showing the portions of the categories for each month:

For me, the holidays, prepared in August and traveled in September (shown as unknown expenses), are much more dominant than I expected. Except for the new glasses in September I did not make any larger investments.

I like this kind of chart more than stacked bar charts because the history for each category is very visible. This chart is called inkblot chart. I stumbled on it on junk charts, asked how to implement it in R on StackOverflow, and included a revised version in the latest pft package. See below for more information.

Read more »

To leave a comment for the author, please follow the link and comment on their blog: factbased. offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...

If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.


Mango solutions

RStudio homepage

Zero Inflated Models and Generalized Linear Mixed Models with R

Dommino data lab

Quantide: statistical consulting and training



CRC R books series

Six Sigma Online Training

Contact us if you wish to help support R-bloggers, and place your banner here.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)