# Blog Archives

## To Difference or Not To Difference?

May 9, 2015
By

In the textbook of time series analysis, we’ve been taught to difference the time series in order to have a stationary series, which can be justified by various plots and statistical tests. In the real-world time series analysis, things are not always as clear as shown in the textbook. For instance, although the ACF plot

## Modeling Count Time Series with tscount Package

March 31, 2015
By

The example below shows how to estimate a simple univariate Poisson time series model with the tscount package. While the model estimation is straightforward and yeilds very similar parameter estimates to the ones generated with the acp package (https://statcompute.wordpress.com/2015/03/29/autoregressive-conditional-poisson-model-i), the prediction mechanism is a bit tricky. 1) For the in-sample and the 1-step-ahead predictions: yhat_

## Modeling Count Time Series with tscount Package

March 31, 2015
By

The example below shows how to estimate a simple univariate Poisson time series model with the tscount package. While the model estimation is straightforward and yeilds very similar parameter estimates to the ones generated with the acp package (https://statcompute.wordpress.com/2015/03/29/autoregressive-conditional-poisson-model-i), the prediction mechanism is a bit tricky. 1) For the in-sample and the 1-step-ahead predictions: yhat_

## rPithon vs. rPython

March 30, 2015
By

Similar to rPython, the rPithon package (http://rpithon.r-forge.r-project.org) allows users to execute Python code from R and exchange the data between Python and R. However, the underlying mechanisms between these two packages are fundamentally different. Wihle rPithon communicates with Python from R through pipes, rPython accomplishes the same task with json. A major advantage of rPithon

## rPithon vs. rPython

March 30, 2015
By

Similar to rPython, the rPithon package (http://rpithon.r-forge.r-project.org) allows users to execute Python code from R and exchange the data between Python and R. However, the underlying mechanisms between these two packages are fundamentally different. Wihle rPithon communicates with Python from R through pipes, rPython accomplishes the same task with json. A major advantage of rPithon

## Autoregressive Conditional Poisson Model – I

March 29, 2015
By

Modeling the time series of count outcome is of interest in the operational risk while forecasting the frequency of losses. Below is an example showing how to estimate a simple ACP(1, 1) model, e.g. Autoregressive Conditional Poisson, without covariates with ACP package.

## Autoregressive Conditional Poisson Model – I

March 29, 2015
By

Modeling the time series of count outcome is of interest in the operational risk while forecasting the frequency of losses. Below is an example showing how to estimate a simple ACP(1, 1) model, e.g. Autoregressive Conditional Poisson, without covariates with ACP package.

## Ensemble Learning with Cubist Model

March 20, 2015
By

The tree-based Cubist model can be easily used to develop an ensemble classifier with a scheme called “committees”. The concept of “committees” is similar to the one of “boosting” by developing a series of trees sequentially with adjusted weights. However, the final prediction is the simple average of predictions from all “committee” members, an idea

## Ensemble Learning with Cubist Model

March 20, 2015
By

The tree-based Cubist model can be easily used to develop an ensemble classifier with a scheme called “committees”. The concept of “committees” is similar to the one of “boosting” by developing a series of trees sequentially with adjusted weights. However, the final prediction is the simple average of predictions from all “committee” members, an idea

## Model Segmentation with Cubist

March 18, 2015
By

Cubist is a tree-based model with a OLS regression attached to each terminal node and is somewhat similar to mob() function in the Party package (https://statcompute.wordpress.com/2014/10/26/model-segmentation-with-recursive-partitioning). Below is a demonstrate of cubist() model with the classic Boston housing data.

## Recent popular posts

Contact us if you wish to help support R-bloggers, and place your banner here.

# Never miss an update! Subscribe to R-bloggers to receive e-mails with the latest R posts.(You will not see this message again.)

Click here to close (This popup will not appear again)