R CODE R OUTPUT SAS CODE & OUTPUT FOR COMPARISON

While coding ensemble methods in data mining with R, e.g. bagging, we often need to generate many data and models objects with sequential names. Below is a quick example how to use assign() function to generate many prediction objects on the fly and then retrieve these predictions with mget() to do the model averaging.

Recently, I am working on a new modeling proposal based on the competing risk and need to prototype multinomial logit models with R. There are R packages implementing multinomial logit models that I’ve tested, namely nnet and vgam. Model outputs with iris data are shown below. However, in my view, above methods are not flexible

From the technical prospective, people usually would choose GRNN (general regression neural network) to do the function approximation for the continuous response variable and use PNN (probabilistic neural network) for pattern recognition / classification problems with categorical outcomes. However, from the practical standpoint, it is often not necessary to draw a fine line between GRNN

Last time when I read the paper “A General Regression Neural Network” by Donald Specht, it was exactly 10 years ago when I was in the graduate school. After reading again this week, I decided to code it out with SAS macros and make this excellent idea available for the SAS community. The prototype of

Similar to the back propagation neural network, the general regression neural network (GRNN) is also a good tool for the function approximation in the modeling toolbox. Proposed by Specht in 1991, GRNN has advantages of instant training and easy tuning. A GRNN would be formed instantly with just a 1-pass training with the development data.

When managing big data with R, many people like to use sqldf() package due to its friendly interface or choose data.table() package for its lightening speed. However, very few would pay special attentions to small details that might significantly boost the efficiency of these packages by adding index to the data.frame or data.table. In my

In my post on 06/05/2013 (http://statcompute.wordpress.com/2013/06/05/estimating-composite-models-for-count-outcomes-with-fmm-procedure), I’ve shown how to estimate finite mixture models, e.g. zero-inflated Poisson and 2-class finite mixture Poisson models, with FMM and NLMIXED procedure in SAS. Today, I am going to demonstrate how to achieve the same results with flexmix package in R. R Code R Output for 2-Class Finite Mixture

MongoDB is a document-based noSQL database. Different from the relational database storing data in tables with rigid schemas, MongoDB stores data in documents with dynamic schemas. In the demonstration below, I am going to show how to extract data from a MongoDB with R. Before starting the R session, we need to install the MongoDB