Association and concordance measures

September 12, 2012

(This article was first published on Freakonometrics - Tag - R-english, and kindly contributed to R-bloggers)

Following the course, in order to define assocation measures (from Kruskal (1958)) or concordance measures (from Scarsini (1984)), define a concordance function as follows: let be a random pair with copula, and with copula Then define

the so-called concordance function. Thus

As proved last week in class,

Based on that function, several concordance measures can be derived. A popular measure is Kendall’s tau, from Kendall (1938), defined as i.e.

which is simply Here, computation can be tricky. Consider the following sample,

> set.seed(1)
> n=40
> library(mnormt)
> X=rmnorm(n,c(0,0),
+ matrix(c(1,.4,.4,1),2,2))
> U=cbind(rank(X[,1]),rank(X[,2]))/(n+1)

Then, using R function, we can obtain Kendall’s tau easily,

> cor(X,method="kendall")[1,2]
[1] 0.3794872

To get our own code (and to understand a bit more how to get that coefficient), we can use

> i=rep(1:(n-1),(n-1):1)
> j=2:n
> for(k in 3:n){j=c(j,k:n)}
> M=cbind(X[i,],X[j,])
> concordant=sum((M[,1]-M[,3])*(M[,2]-M[,4])>0)
> discordant=sum((M[,1]-M[,3])*(M[,2]-M[,4])<0)
> total=n*(n-1)/2
> (K=(concordant-discordant)/total)
[1] 0.3794872

or the following (we’ll use random variable quite frequently),

> i=rep(1:n,each=n)
> j=rep(1:n,n)
> Z=((X[i,1]>X[j,1])&(X[i,2]>X[j,2]))
> (K=4*mean(Z)*n/(n-1)-1)
[1] 0.3794872

Another measure is Spearman’s rank correlation, from Spearman (1904),

where has distribution

Here, which leads to the following expressions

Numerically, we have the following

> cor(X,method="spearman")[1,2]
[1] 0.5388368
> cor(rank(X[,1]),rank(X[,2]))
[1] 0.5388368

Note that it is also possible to write

Another measure is the cograduation index, from Gini (1914), obtained by sybstituting an L1 norm instead of a L2 one in the previous expression,

Note that this index can also be defined as Here,

> Rx=rank(X[,1]);Ry=rank(X[,2]);
> (G=2/(n^2) *(sum(abs(Rx+Ry-n-1))-
+ sum(abs(Rx-Ry))))
[1] 0.41

Finally, another measure is the one from Blomqvist (1950). Let denote the median of, i.e.

Then define

or equivalently

> Mx=median(X[,1]);My=median(X[,2])
> (B=4*sum((X[,1]<=Mx)*((X[,2]<=My)))/n-1)
[1] 0.4

To leave a comment for the author, please follow the link and comment on their blog: Freakonometrics - Tag - R-english. offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...

If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Tags: , , , , , , , , , , , , , , ,

Comments are closed.


Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)