(This article was first published on

**R snippets**, and kindly contributed to R-bloggers)Since I have a vacation this time I decided to implement some entertaining graphics. I have chosen to animate a Cassini oval.

The task is can be accomplished using polar equation:

The implementation of the animation is given by the following code:

library

**(**animation**)**xy

**<-****function****(**angle, a, b**)****{** ca

**<-**cos**(**2*****angle**)** r2

**<-**a**^**2*****ca**+**sqrt**(**a**^**4*****ca**^**2**–****(**a**^**4**–**b**^**4**))** c

**(**sqrt**(**r2**)*******cos**(**angle**)**, sqrt**(**r2**)*******sin**(**angle**))****}**

go

**<-****function****()****{** angle

**<-**seq**(**0, 2*****pi, len**=**1000**)** par

**(**mar**=**rep**(**0,4**))** b

**<-**1**+**0.5*****seq**(**0, 1, len**=**31**)****^**3 b

**<-**c**(**b, 1.5, rev**(**b**))****for**

**(**i

**in**b

**)**

**{**

coord

**<-**t**(**sapply**(**angle, xy, a**=**1, b**=**i**))** plot

**(**coord, type**=**“l”, xlim

**=**c**(-**2, 2**)**, ylim**=**c**(-**1.25, 1.25**))** polygon

**(**coord, col**=**“gray”**)****}**

**}**

ani.options

**(**interval**=**0.1**)**saveGIF

**(**go**())**Parameter a is fixed to 1 and b changes from 1 to 1.5. In order to achieve smooth animation the sequence defining changes of b is not uniform but is more dense near 1.

And here is the result:

To

**leave a comment**for the author, please follow the link and comment on their blog:**R snippets**.R-bloggers.com offers

**daily e-mail updates**about R news and tutorials on topics such as: visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...