An ivreg2 function for R

May 3, 2012

(This article was first published on DiffusePrioR » R, and kindly contributed to R-bloggers)

The ivreg2 command is one of the most popular routines in Stata. The reason for this popularity is its simplicity. A one-line ivreg2 command generates not only the instrumental variable regression coefficients and their standard errors, but also a number of other statistics of interest.

I have come across a number of functions in R that calculate instrumental variable regressions. However, none appear to (and correct me if I am wrong) offer an output similar to the ivreg2 command in Stata. The function below is my first attempt to replicate Stata’s ivreg2.


There are four required arguments. The ‘form’ argument is the second stage regression, written in the same manner as any regression model in R. The ‘endog’ argument is a character object with the name of the endogenous variable. The user should specify the instrumental variable(s) with the ‘iv’ argument. These instruments should be contained in ‘data’ – a data frame object. Note, the function in its current state only allows of one endogenous variable (which is usually more than enough for the researcher to contend with). Furthermore, make sure that there are no ‘NA’ values in the data frame being passed through the function.

This function performs a 2SLS regression calculating the usual regression output, a weak identification F-statistic, the Wu-Hausman test of endogeneity, and, in the case where there is more than one-instrument, a Sargan test. The weak identification statistic is used to determine whether the instrument(s) is(are) sufficiently correlated with the endogenous variable of interest. The ‘rule-of-thumb’ critical statistic here is ten. A Wu-Hausman test examines the difference between the IV and OLS coefficients. Rejecting the null hypothesis indicates the presence of endogeneity. Finally, the Sargan over-identification test is used in the cases where there are more instruments than endogenous regressors. A rejection of the null in this test means that the instruments are not exclusively affecting the outcome of interest though the endogenous variable.

The code for this function, alongside an example with the well known Mroz data, is shown below.

> mroz <- read.dta("mroz.dta")
> mroz <- mroz[,c("hours","lwage","educ","age","kidslt6","kidsge6","nwifeinc","exper")]
> ivreg2(form=hours ~ lwage + educ + age + kidslt6 + kidsge6 + nwifeinc,
+       endog="lwage",iv=c("exper"),data=na.omit(mroz))
                Coef    S.E. t-stat p-val
(Intercept) 2478.435 655.207  3.783 0.000
lwage       1772.323 594.185  2.983 0.003
educ        -201.187  69.910 -2.878 1.996
age          -11.229  10.537 -1.066 1.713
kidslt6     -191.659 195.761 -0.979 1.672
kidsge6      -37.732  63.635 -0.593 1.447
nwifeinc      -9.978   7.174 -1.391 1.836

     First Stage F-test
[1,]             12.965

     Wu-Hausman F-test p-val
[1,]             36.38     0

     Sargan test of over-identifying restrictions 
[1,] "No test performed. Model is just identified"

ivreg2 <- function(form,endog,iv,data,digits=3){
  # library(MASS)
  # model setup
  r1 <- lm(form,data)
  y <- r1$fitted.values+r1$resid
  x <- model.matrix(r1)
  aa <- rbind(endog == colnames(x),1:dim(x)[2])  
  z <- cbind(x[,aa[2,aa[1,]==0]],data[,iv])  
  colnames(z)[(dim(z)[2]-length(iv)+1):(dim(z)[2])] <- iv  
  # iv coefficients and standard errors
  z <- as.matrix(z)
  pz <- z %*% (solve(crossprod(z))) %*% t(z)
  biv <- solve(crossprod(x,pz) %*% x) %*% (crossprod(x,pz) %*% y)
  sigiv <- crossprod((y - x %*% biv),(y - x %*% biv))/(length(y)-length(biv))
  vbiv <- as.numeric(sigiv)*solve(crossprod(x,pz) %*% x)
  res <- cbind(biv,sqrt(diag(vbiv)),biv/sqrt(diag(vbiv)),(1-pnorm(biv/sqrt(diag(vbiv))))*2)
  res <- matrix(as.numeric(sprintf(paste("%.",paste(digits,"f",sep=""),sep=""),res)),nrow=dim(res)[1])
  rownames(res) <- colnames(x)
  colnames(res) <- c("Coef","S.E.","t-stat","p-val")
  # First-stage F-test
  y1 <- data[,endog]
  z1 <- x[,aa[2,aa[1,]==0]]
  bet1 <- solve(crossprod(z)) %*% crossprod(z,y1)
  bet2 <- solve(crossprod(z1)) %*% crossprod(z1,y1)
  rss1 <- sum((y1 - z %*% bet1)^2)
  rss2 <- sum((y1 - z1 %*% bet2)^2)
  p1 <- length(bet1)
  p2 <- length(bet2)
  n1 <- length(y)
  fs <- abs((rss2-rss1)/(p2-p1))/(rss1/(n1-p1))
  firststage <- c(fs)
  firststage <- matrix(as.numeric(sprintf(paste("%.",paste(digits,"f",sep=""),sep=""),firststage)),ncol=length(firststage))
  colnames(firststage) <- c("First Stage F-test")
  # Hausman tests
  bols <- solve(crossprod(x)) %*% crossprod(x,y) 
  sigols <- crossprod((y - x %*% bols),(y - x %*% bols))/(length(y)-length(bols))
  vbols <- as.numeric(sigols)*solve(crossprod(x))
  sigml <- crossprod((y - x %*% bols),(y - x %*% bols))/(length(y))
  x1 <- x[,!(colnames(x) %in% "(Intercept)")]
  z1 <- z[,!(colnames(z) %in% "(Intercept)")]
  pz1 <- z1 %*% (solve(crossprod(z1))) %*% t(z1)
  biv1 <- biv[!(rownames(biv) %in% "(Intercept)"),]
  bols1 <- bols[!(rownames(bols) %in% "(Intercept)"),]
  # Durbin-Wu-Hausman chi-sq test:
  # haus <- t(biv1-bols1) %*% ginv(as.numeric(sigml)*(solve(crossprod(x1,pz1) %*% x1)-solve(crossprod(x1)))) %*% (biv1-bols1)
  # hpvl <- 1-pchisq(haus,df=1)
  # Wu-Hausman F test
  resids <- NULL
  resids <- cbind(resids,y1 - z %*% solve(crossprod(z)) %*% crossprod(z,y1))
  x2 <- cbind(x,resids)
  bet1 <- solve(crossprod(x2)) %*% crossprod(x2,y)
  bet2 <- solve(crossprod(x)) %*% crossprod(x,y)
  rss1 <- sum((y - x2 %*% bet1)^2)
  rss2 <- sum((y - x %*% bet2)^2)
  p1 <- length(bet1)
  p2 <- length(bet2)
  n1 <- length(y)
  fs <- abs((rss2-rss1)/(p2-p1))/(rss1/(n1-p1))
  fpval <- 1-pf(fs, p1-p2, n1-p1)
  #hawu <- c(haus,hpvl,fs,fpval)
  hawu <- c(fs,fpval)
  hawu <- matrix(as.numeric(sprintf(paste("%.",paste(digits,"f",sep=""),sep=""),hawu)),ncol=length(hawu))
  #colnames(hawu) <- c("Durbin-Wu-Hausman chi-sq test","p-val","Wu-Hausman F-test","p-val")
  colnames(hawu) <- c("Wu-Hausman F-test","p-val")  
  # Sargan Over-id test
  ivres <- y - (x %*% biv)
  oid <- solve(crossprod(z)) %*% crossprod(z,ivres)
  sstot <- sum((ivres-mean(ivres))^2)
  sserr <- sum((ivres - (z %*% oid))^2)
  rsq <- 1-(sserr/sstot)
  sargan <- length(ivres)*rsq
  spval <- 1-pchisq(sargan,df=length(iv)-1)
  overid <- c(sargan,spval)
  overid <- matrix(as.numeric(sprintf(paste("%.",paste(digits,"f",sep=""),sep=""),overid)),ncol=length(overid))
  colnames(overid) <- c("Sargan test of over-identifying restrictions","p-val")
    overid <- t(matrix(c("No test performed. Model is just identified")))
    colnames(overid) <- c("Sargan test of over-identifying restrictions")
  full <- list(results=res, weakidtest=firststage, endogeneity=hawu, overid=overid)

To leave a comment for the author, please follow the link and comment on their blog: DiffusePrioR » R. offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...

If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Tags: , , , , , , , , ,

Comments are closed.


Mango solutions

RStudio homepage

Zero Inflated Models and Generalized Linear Mixed Models with R

Dommino data lab

Quantide: statistical consulting and training



CRC R books series

Six Sigma Online Training

Contact us if you wish to help support R-bloggers, and place your banner here.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)