**DiffusePrioR » R**, and kindly contributed to R-bloggers)

The ivreg2 command is one of the most popular routines in Stata. The reason for this popularity is its simplicity. A one-line ivreg2 command generates not only the instrumental variable regression coefficients and their standard errors, but also a number of other statistics of interest.

I have come across a number of functions in R that calculate instrumental variable regressions. However, none appear to (and correct me if I am wrong) offer an output similar to the ivreg2 command in Stata. The function below is my first attempt to replicate Stata’s ivreg2.

ivreg2(form,endog,iv,data,digits)

There are four required arguments. The ‘form’ argument is the second stage regression, written in the same manner as any regression model in R. The ‘endog’ argument is a character object with the name of the endogenous variable. The user should specify the instrumental variable(s) with the ‘iv’ argument. These instruments should be contained in ‘data’ – a data frame object. Note, the function in its current state only allows of one endogenous variable (which is usually more than enough for the researcher to contend with). Furthermore, make sure that there are no ‘NA’ values in the data frame being passed through the function.

This function performs a 2SLS regression calculating the usual regression output, a weak identification F-statistic, the Wu-Hausman test of endogeneity, and, in the case where there is more than one-instrument, a Sargan test. The weak identification statistic is used to determine whether the instrument(s) is(are) sufficiently correlated with the endogenous variable of interest. The ‘rule-of-thumb’ critical statistic here is ten. A Wu-Hausman test examines the difference between the IV and OLS coefficients. Rejecting the null hypothesis indicates the presence of endogeneity. Finally, the Sargan over-identification test is used in the cases where there are more instruments than endogenous regressors. A rejection of the null in this test means that the instruments are not exclusively affecting the outcome of interest though the endogenous variable.

The code for this function, alongside an example with the well known Mroz data, is shown below.

> mroz <- read.dta("mroz.dta") > mroz <- mroz[,c("hours","lwage","educ","age","kidslt6","kidsge6","nwifeinc","exper")] > ivreg2(form=hours ~ lwage + educ + age + kidslt6 + kidsge6 + nwifeinc, + endog="lwage",iv=c("exper"),data=na.omit(mroz)) $results Coef S.E. t-stat p-val (Intercept) 2478.435 655.207 3.783 0.000 lwage 1772.323 594.185 2.983 0.003 educ -201.187 69.910 -2.878 1.996 age -11.229 10.537 -1.066 1.713 kidslt6 -191.659 195.761 -0.979 1.672 kidsge6 -37.732 63.635 -0.593 1.447 nwifeinc -9.978 7.174 -1.391 1.836 $weakidtest First Stage F-test [1,] 12.965 $endogeneity Wu-Hausman F-test p-val [1,] 36.38 0 $overid Sargan test of over-identifying restrictions [1,] "No test performed. Model is just identified"

ivreg2 <- function(form,endog,iv,data,digits=3){ # library(MASS) # model setup r1 <- lm(form,data) y <- r1$fitted.values+r1$resid x <- model.matrix(r1) aa <- rbind(endog == colnames(x),1:dim(x)[2]) z <- cbind(x[,aa[2,aa[1,]==0]],data[,iv]) colnames(z)[(dim(z)[2]-length(iv)+1):(dim(z)[2])] <- iv # iv coefficients and standard errors z <- as.matrix(z) pz <- z %*% (solve(crossprod(z))) %*% t(z) biv <- solve(crossprod(x,pz) %*% x) %*% (crossprod(x,pz) %*% y) sigiv <- crossprod((y - x %*% biv),(y - x %*% biv))/(length(y)-length(biv)) vbiv <- as.numeric(sigiv)*solve(crossprod(x,pz) %*% x) res <- cbind(biv,sqrt(diag(vbiv)),biv/sqrt(diag(vbiv)),(1-pnorm(biv/sqrt(diag(vbiv))))*2) res <- matrix(as.numeric(sprintf(paste("%.",paste(digits,"f",sep=""),sep=""),res)),nrow=dim(res)[1]) rownames(res) <- colnames(x) colnames(res) <- c("Coef","S.E.","t-stat","p-val") # First-stage F-test y1 <- data[,endog] z1 <- x[,aa[2,aa[1,]==0]] bet1 <- solve(crossprod(z)) %*% crossprod(z,y1) bet2 <- solve(crossprod(z1)) %*% crossprod(z1,y1) rss1 <- sum((y1 - z %*% bet1)^2) rss2 <- sum((y1 - z1 %*% bet2)^2) p1 <- length(bet1) p2 <- length(bet2) n1 <- length(y) fs <- abs((rss2-rss1)/(p2-p1))/(rss1/(n1-p1)) firststage <- c(fs) firststage <- matrix(as.numeric(sprintf(paste("%.",paste(digits,"f",sep=""),sep=""),firststage)),ncol=length(firststage)) colnames(firststage) <- c("First Stage F-test") # Hausman tests bols <- solve(crossprod(x)) %*% crossprod(x,y) sigols <- crossprod((y - x %*% bols),(y - x %*% bols))/(length(y)-length(bols)) vbols <- as.numeric(sigols)*solve(crossprod(x)) sigml <- crossprod((y - x %*% bols),(y - x %*% bols))/(length(y)) x1 <- x[,!(colnames(x) %in% "(Intercept)")] z1 <- z[,!(colnames(z) %in% "(Intercept)")] pz1 <- z1 %*% (solve(crossprod(z1))) %*% t(z1) biv1 <- biv[!(rownames(biv) %in% "(Intercept)"),] bols1 <- bols[!(rownames(bols) %in% "(Intercept)"),] # Durbin-Wu-Hausman chi-sq test: # haus <- t(biv1-bols1) %*% ginv(as.numeric(sigml)*(solve(crossprod(x1,pz1) %*% x1)-solve(crossprod(x1)))) %*% (biv1-bols1) # hpvl <- 1-pchisq(haus,df=1) # Wu-Hausman F test resids <- NULL resids <- cbind(resids,y1 - z %*% solve(crossprod(z)) %*% crossprod(z,y1)) x2 <- cbind(x,resids) bet1 <- solve(crossprod(x2)) %*% crossprod(x2,y) bet2 <- solve(crossprod(x)) %*% crossprod(x,y) rss1 <- sum((y - x2 %*% bet1)^2) rss2 <- sum((y - x %*% bet2)^2) p1 <- length(bet1) p2 <- length(bet2) n1 <- length(y) fs <- abs((rss2-rss1)/(p2-p1))/(rss1/(n1-p1)) fpval <- 1-pf(fs, p1-p2, n1-p1) #hawu <- c(haus,hpvl,fs,fpval) hawu <- c(fs,fpval) hawu <- matrix(as.numeric(sprintf(paste("%.",paste(digits,"f",sep=""),sep=""),hawu)),ncol=length(hawu)) #colnames(hawu) <- c("Durbin-Wu-Hausman chi-sq test","p-val","Wu-Hausman F-test","p-val") colnames(hawu) <- c("Wu-Hausman F-test","p-val") # Sargan Over-id test ivres <- y - (x %*% biv) oid <- solve(crossprod(z)) %*% crossprod(z,ivres) sstot <- sum((ivres-mean(ivres))^2) sserr <- sum((ivres - (z %*% oid))^2) rsq <- 1-(sserr/sstot) sargan <- length(ivres)*rsq spval <- 1-pchisq(sargan,df=length(iv)-1) overid <- c(sargan,spval) overid <- matrix(as.numeric(sprintf(paste("%.",paste(digits,"f",sep=""),sep=""),overid)),ncol=length(overid)) colnames(overid) <- c("Sargan test of over-identifying restrictions","p-val") if(length(iv)-1==0){ overid <- t(matrix(c("No test performed. Model is just identified"))) colnames(overid) <- c("Sargan test of over-identifying restrictions") } full <- list(results=res, weakidtest=firststage, endogeneity=hawu, overid=overid) return(full) }

**leave a comment**for the author, please follow the link and comment on their blog:

**DiffusePrioR » R**.

R-bloggers.com offers

**daily e-mail updates**about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...