Webinar: Model-Based Machine Learning and Probabilistic Programming using RStan

July 16, 2016
By

[This article was first published on R – Emaasit's Blog, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

mbml-webinar2

I am glad to announce that I shall be presenting a live webinar with Domino Data Labs on July 20, 2016 from 11:00 – 11:30 AM PST on Model-Based Machine Learning and Probabilistic Programming using RStan. If you are interested in adopting machine learning but are overwhelmed by the vast amount of learning algorithms, this webinar will show how to overcome that challenge. This blog post describes most of the material we will cover in the webinar. Here is the abstract for the webinar:

Synopsis

In the last several decades, thousands of machine learning algorithms have been developed. Very often, the selection of an algorithm to solve a particular problem is driven more by the data scientist’s familiarity with a small subset of available algorithms, than optimizing for predictive power or operational constraints. This is unsurprising: Newcomers to machine learning and veteran data scientists alike, may be overwhelmed by the multitude of machine learning algorithms and where and how it is most appropriate to use them.

In this webinar, Daniel Emaasit will introduce Model-Based Machine Learning (MBML), an approach to machine learning which addresses these challenges. Daniel will discuss the various uses of MBML, from tasks such as classification, to regression and clustering, and how it allows data scientists to address the uncretainty inherent to real-world machine learning applications. Daniel will demonstrate how to implement MBML in a probabilistic programming language called Stan, using the RStan package. At the end of webinar, attendees will have the knowledge to build their own custom probabilistic models, learning their parameters from data.

Daniel Emaasit

About the Speaker

Daniel Emaasit is a Ph.D Student of Transportation Engineering at UNLV, where his research interests involve the development of probabilistic machine learning methods for high-dimensional data, with applications to urban mobility, transport planning, highway safety, & traffic operations.

Click this link to register for the webinar. I look forward to seeing you there and answering your questions.

Tagged: Data Science, Machine Learning, R, RStudio

To leave a comment for the author, please follow the link and comment on their blog: R – Emaasit's Blog.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.



If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.

Search R-bloggers

Sponsors

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)