Variance Swap Replcation in R.

July 6, 2013

(This article was first published on Quant-Day, and kindly contributed to R-bloggers)

As I was studying volatility derivatives I made some charts that represent some key features of replication. Say variance swap has a payoff function \(f=(\sigma^2 – K_{VOL}) \), which means that \(K_{VOL}\) will most likely be the forward volatility close to implied. To replicate this theory goes deep into maths and log-contrats that are not even traded on the market, however the idea is simple, buy a portfolio of options with equally distributed strike prices and weight them by reciprocal of squared strikes, i.e.\(1 \big/ K^2 \). Go for liquid ones, i.e. out of the money puts and out of the money calls. Then volatility or in this case variance is dependent on VEGA sensitivity of portfolio. The following graph gives an idea of how it is done. The code is included below:

X-Y – spot/time to maturity, Z – Vega\( \left(\frac{\partial C}{\partial \sigma}\right)\).


To leave a comment for the author, please follow the link and comment on their blog: Quant-Day. offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...

If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.

Search R-bloggers


Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)