Using the geofacet package to spatially arrange plots
[This article was first published on r.iresmi.net, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
The {geofacet} package allows to « arrange a sequence of plots of data for different geographical entities into a grid that strives to preserve some of the original geographical orientation of the entities ».
Like the previous post, it’s interesting if you view each entity as a unit and don’t care for its real size or weight, and don’t want to spend too much time manually finding the best grid.
We will again use the same COVID-19 dataset. We manually add the overseas départements once we have found the right grid (by trying different seeds) and adjust Corsica position.

# packages ----------------------------------------------------------------
library(tidyverse)
library(httr)
library(fs)
library(sf)
library(readxl)
library(janitor)
library(glue)
library(geofacet)
# also install ragg
# sources -----------------------------------------------------------------
# https://www.data.gouv.fr/fr/datasets/donnees-hospitalieres-relatives-a-lepidemie-de-covid-19/
fichier_covid <- "donnees/covid.csv"
url_donnees_covid <- "https://www.data.gouv.fr/fr/datasets/r/63352e38-d353-4b54-bfd1-f1b3ee1cabd7"
# https://www.insee.fr/fr/statistiques/2012713#tableau-TCRD_004_tab1_departements
fichier_pop <- "donnees/pop.xls"
url_donnees_pop <- "https://www.insee.fr/fr/statistiques/fichier/2012713/TCRD_004.xls"
# Adminexpress : à télécharger manuellement
# https://geoservices.ign.fr/documentation/diffusion/telechargement-donnees-libres.html#admin-express
aex <- path_expand("~/Downloads/ADMIN-EXPRESS_2-2__SHP__FRA_2020-02-24/ADMIN-EXPRESS/1_DONNEES_LIVRAISON_2020-02-24")
# config ------------------------------------------------------------------
options(scipen = 999)
force_download <- FALSE # retélécharger même si le fichier existe et a été téléchargé aujourd'hui ?
# téléchargement -------------------------------------------------
if (!dir_exists("donnees")) dir_create("donnees")
if (!dir_exists("resultats")) dir_create("resultats")
if (!dir_exists("resultats/animation_spf")) dir_create("resultats/animation_spf")
if (!file_exists(fichier_covid) |
file_info(fichier_covid)$modification_time < Sys.Date() |
force_download) {
GET(url_donnees_covid,
progress(),
write_disk(fichier_covid, overwrite = TRUE)) %>%
stop_for_status()
}
if (!file_exists(fichier_pop)) {
GET(url_donnees_pop,
progress(),
write_disk(fichier_pop)) %>%
stop_for_status()
}
covid <- read_csv2(fichier_covid)
pop <- read_xls(fichier_pop, skip = 2) %>%
clean_names()
# adminexpress prétéléchargé
dep <- read_sf(path(aex, "ADE_2-2_SHP_LAMB93_FR/DEPARTEMENT.shp")) %>%
clean_names() %>%
st_set_crs(2154)
# construction de la grille ----------------------------------------
grid_fr <- dep %>%
select(insee_dep, nom_dep) %>%
grid_auto(names = "nom_dep", codes = "insee_dep", seed = 4) %>%
add_row(row = 8,
col = 1,
name_nom_dep = "Guadeloupe",
code_insee_dep = "971") %>%
add_row(row = 9,
col = 1,
name_nom_dep = "Martinique",
code_insee_dep = "972") %>%
add_row(row = 10,
col = 1,
name_nom_dep = "Guyane",
code_insee_dep = "973") %>%
add_row(row = 7,
col = 13,
name_nom_dep = "Mayotte",
code_insee_dep = "976") %>%
add_row(row = 8,
col = 13,
name_nom_dep = "La Réunion",
code_insee_dep = "974")
grid_fr[grid_fr$code_insee_dep %in% c("2A", "2B"), "col"] <- 13
grid_fr[grid_fr$code_insee_dep %in% c("2A", "2B"), "row"] <- grid_fr[grid_fr$code_insee_dep %in% c("2A", "2B"), "row"] - 1
# graphique -----------------------------------------------------
df <- covid %>%
filter(sexe == 0) %>%
rename(deces = dc,
reanim = rea,
hospit = hosp) %>%
left_join(pop,
by = c("dep" = "x1")) %>%
mutate(incidence = deces / x2020_p * 100000) %>%
rename(insee_dep = dep) %>%
left_join(grid_fr %>%
select(nom_dep = name_nom_dep,
insee_dep = code_insee_dep)) %>%
drop_na(insee_dep) %>%
ggplot(aes(jour, incidence)) +
geom_area() +
facet_geo(~ nom_dep, grid = grid_fr) +
labs(title = "Mortalité",
subtitle = "COVID-19 - France",
x = "date",
y = "décès pour\n100 000 hab.",
caption = glue("http://r.iresmi.net/\ndonnées SPF {Sys.Date()}")) +
theme_minimal() +
theme(strip.text = element_text(hjust = 0, size = 7))
ggsave(glue("resultats/covid_fr_mortalite_geofacette_{Sys.Date()}.png"),
width = 25, height = 20, units = "cm", scaling = .8, res = 300, device = ragg::agg_png)
To leave a comment for the author, please follow the link and comment on their blog: r.iresmi.net.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.