(This article was first published on

**R – Modern Data**, and kindly contributed to R-bloggers)This post is inspired by Lukasz Piwek’s awesome Tufte in R post. We’ll try to replicate Tufte’s visualization practices in R using Plotly. You can read more about Edward Tufte here.

One easy way to replicate the graphs showcased on Lukasz’s blog would be to simply use `ggplotly()`

on his `ggplot2()`

code.

We’ll use `plot_ly()`

instead.

## Minimal Line Plot

library(plotly) x <- 1967:1977 y <- c(0.5,1.8,4.6,5.3,5.3,5.7,5.4,5,5.5,6,5) hovertxt <- paste("Year: ", x, "

", "Exp: ", y) plot_ly(x = x, y = y, mode = "line + markers", name = "", marker = list(color = "#737373", size = 8), line = list(width = 1), showlegend = F, hoverinfo = "text", text = hovertxt) %>% add_trace(x = c(1966.75, 1977.25), y = c(5, 5), mode = "lines", line = list(dash = "5px", color = "#737373"), showlegend = F, hoverinfo = "none") %>% add_trace(x = c(1966.75, 1977.25), y = c(6, 6), mode = "lines", line = list(dash = "5px", color = "#737373"), showlegend = F, hoverinfo = "none") %>% layout(xaxis = list(title = "", showgrid = F, tickmode = "array", type = "linear", autorange = F, range = c(1966.75, 1977.25), tickvals = x, tickfont = list(family = "serif", size = 10), ticks = "outside"), yaxis = list(title = "", showgrid = F, tickmode = "array", type = "linear", tickvals = 1:6, ticktext = paste0("$", c(300, 320, 340, 360, 380, 400)), tickfont = list(family = "serif", size = 10), ticks = "outside"), margin = list(r = 20), annotations = list( list(xref = "x", yref = "y", x = 1977.25, y = 5.5, text = "5%", showarrow = F, ax = 0, ay = 0), list(xref = "x", yref = "y", x = 1976, y = 1.5, align = "right", text = "Per capita

budget expenditures

in constant dollars", showarrow = F, ax = 0, ay = 0) ))

## Range-frame (or quartile-frame) scatterplot

library(plotly) x <- mtcars$wt y <- mtcars$mpg hovertxt <- paste("Weight:", x, "

", "Miles per gallon: ", y) plot_ly(x = x, y = y, mode = "markers", marker = list(color = "#737373"), hoverinfo = "text", text = hovertxt) %>% layout(xaxis = list(title = "Car weight (lb/1000)", titlefont = list(family = "serif"), showgrid = F, tickmode = "array", tickvals = summary(x), ticktext = round(summary(x), 1), tickfont = list(family = "serif", size = 10), ticks = "outside"), yaxis = list(title = "Miles per gallon of fuel", titlefont = list(family = "serif"), showgrid = F, tickmode = "array", tickvals = summary(y), ticktext = round(summary(y), 1), tickfont = list(family = "serif", size = 10), ticks = "outside"))

## Dot-dash (Rug) plot

library(plotly) library(dplyr) x <- mtcars$wt y <- mtcars$mpg hovertxt <- paste("Weight:", x, "

", "Miles per gallon: ", y) ds <- data.frame(x, y, labelsx = round(x, 0), labelsy = round(y,0)) ds <- ds %>% arrange(x) ds$labelsx <- c(rep("", 7), 2, rep("", 12), 3, rep("", 7), 4, rep("", 2), 5) ds <- ds %>% arrange(y) ds$labelsy <- c(rep("", 1), 10, rep("", 5), 15, rep("", 8), 20, rep("", 8), 26, rep("", 5), 34) plot_ly(ds, x = x, y = y, mode = "markers", marker = list(color = "#737373"), hoverinfo = "text", text = hovertxt) %>% layout(xaxis = list(title = "Car weight (lb/1000)", titlefont = list(family = "serif"), showgrid = F,tickmode = "array", tickvals = x, ticktext = labelsx, ticklen = 10, tickfont = list(family = "serif", size = 10), ticks = "outside"), yaxis = list(title = "Miles Per Gallon of Fuel", titlefont = list(family = "serif"), showgrid = F,tickmode = "array", tickvals = y, ticktext = labelsy, ticklen = 10, tickfont = list(family = "serif", size = 10), ticks = "outside"))

## Minimal Boxplot

This one needs a little bit of work. Since `geom_tufteboxplot()`

is not yet supported, using `ggplotly()`

won’t work either.

library(plotly) # Empty plot p <- plot_ly() vec <- sort(unique(quakes$mag)) # Each mean (dot) and quartile (line - segment) will have to be added as a separate trace for(i in vec){ summ <- boxplot.stats(subset(quakes, mag == i)$stations)$stats hovertxt <- paste("Mean:", summ[3], "

", "IQR:", IQR(subset(quakes, mag == i)$stations)) p <- add_trace(p, x = i, y = summ[3], mode = "markers", hoverinfo = "text", text = hovertxt, marker = list(color = "#737373", size = 6), evaluate = T, showlegend = F) p <- add_trace(p, x = c(i, i), y = c(summ[1], summ[2]), mode = "lines", hoverinfo = "none", marker = list(color = "#737373"), line = list(width = 1), evaluate = T, showlegend = F) p <- add_trace(p, x = c(i, i), y = c(summ[4], summ[5]), mode = "lines", hoverinfo = "none", marker = list(color = "#737373"), line = list(width = 1), evaluate = T, showlegend = F) } # Layout options p <- layout(p, xaxis = list(showgrid = F, nticks = length(vec)), yaxis = list(showgrid = F), annotations = list( list(xanchor = "left", x = 4, y = 120, text = "Number of stations

reporting Richter Magnitude

of Fiji earthquakes (n=1000)", align = "left", showarrow = F, ax = 0, ay = 0))) p

## Minimal Barchart

library(psych) library(reshape2) ds <- melt(colMeans(msq[,c(2,7,34,36,42,43,46,55,68)],na.rm = T)*10) ds$trait <- rownames(ds) hovertxt <- paste(ds$trait, ":", round(ds$value,3)) plot_ly(ds, x = 1:nrow(ds), y = value, type = "bar", marker = list(color = "#737373"), hoverinfo = "text", showlegend = F, text = hovertxt) %>% add_trace(x = c(0.4, 9.6, NA, 0.4, 9.6, NA, 0.4, 9.6, NA, 0.4, 9.6, NA, 0.4, 9.6), y = c(1, 1, NA, 2, 2, NA, 3, 3, NA, 4, 4, 5, 5), mode = "lines", marker = list(color = "white"), showlegend = F) %>% layout(xaxis = list(title = "", tickmode = "array", tickvals = 1:nrow(ds), ticktext = trait, tickfont = list(family = "serif", size = 10)), yaxis = list(title = "", showgrid = F), annotations = list( list(x = 1, xanchor = "left", y = 6, showarrow = F, ax = 0, ay = 0, align = "left", text = "Average scores

on negative emotion traits

from 3896 participants

(Watson et al., 1988)")))

To

**leave a comment**for the author, please follow the link and comment on their blog:**R – Modern Data**.R-bloggers.com offers

**daily e-mail updates**about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...