**R – Irregularly Scheduled Programming**, and kindly contributed to R-bloggers)

This neat approach showed up recently as an answer to a FiveThirtyEight puzzle and of course I couldn’t help but throw it at `dplyr`

as soon as I could. Turns out that’s not a terrible idea. The question posed is

optimise

200a + 100b + 50c + 25d

under the constraints

400a + 400b + 150c + 50d ≤ 1000,

b ≤ a,

a ≤ 1,

c ≤ 8,

d ≤ 4,and (a,b,c,d) all non-negative integers.

Leaving aside any interpretations of wording of the original question (let’s just start with trying to solve *this* system of inequalities) the solution provided used 4 nested loops, which can definitely be avoided.

My approach was to create all possible combinations of the 4 variables (within the given constraints), filter out the ones that don’t meet the constraint criteria, then sort by the evaluating expression to find which one does best.

I’m not suggesting that this is by any means always the best approach, but when the phase-space of possible solutions is so low (especially combinations of small integers) then this is pretty tidy (technically a single `dplyr`

chain).

Alternatively, one could set this up as an equation and use a linear solver. In that case, we want to optimise

subject to the constraints

where and represent the coefficients and variables to be optimised, the constraint vector, and a matrix of coefficients for the constraints. For the system we’re looking at, that matrix inequality looks like this

Of course, the constraint that needs to be checked after the fact.

Programming this is fairly straightforward, even with the constraint that these are integer solutions. `limSolve::linp`

is made for exactly these types of problems.

which results in the same answer as our manual brute-force search.

One last thing to try is to plot the solution space and see how it looks. Sounds like a good opportunity to try out plotly.

Since this is technically a 5D plot (4 variables and a value) it’s a little difficult to visualise. I’ve reduced the dimensionality by treating each unique combination of and (i.e. ) as a group and using colour to distinguish those. The plot below should show up as a 3D object, so click, drag, and scroll it to have a closer look. Clicking on a group will remove/add it so you can get a clearer view, and hovering over a point should bring up the values of the axes and evaluation.

Going back to the expression that’s being optimised it’s pretty clear why it’s broken down into 4 planes when grouped this way (substitute different values of and to see).

Do you have another way to solve this? Drop a line or a link in the comments.

**leave a comment**for the author, please follow the link and comment on their blog:

**R – Irregularly Scheduled Programming**.

R-bloggers.com offers

**daily e-mail updates**about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...