simulation fodder for future exams

[This article was first published on R – Xi'an's Og, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Here are two nice exercises for a future simulation exam, seen and solved on X validated.The first one is about simulating a Gibbs sampler associated with the joint target


defined over IR² for a≥0 (or possibly a>-1). The conditionals are identical and non-standard, but a simple bound on the conditional density is the corresponding standard double exponential density, which makes for a straightforward accept-reject implementation. However it is also feasible to break the full conditional into three parts, depending on the respective positions of x, y, and 0, and to obtain easily invertible cdfs on the three intervals.The second exercise is about simulating from the cdf


which can be numerically inverted. It is however more fun to call for an accept-reject algorithm by bounding the density with a ½ ½ mixture of an Exponential Exp(a) and of the 1/(p+1)-th power of an Exponential Exp(b/(p+1)). Since no extra constant appears in the solution,  I suspect the (p+1) in b/(p+1) was introduced on purpose. As seen in the above fit for 10⁶ simulations (and a=1,b=2,p=3), there is no deviation from the target! There is however an even simpler resolution to the exercise: since the tail function (1-F(x)) appears as the product of two tail functions, exp(-ax) and the other one, the cdf is the distribution of the minimum of two random variates, one with the Exp(a) distribution and the other one being the 1/(p+1)-th power of an Exponential Exp(b/(p+1)) distribution. Which of course returns a very similar histogram fit:

To leave a comment for the author, please follow the link and comment on their blog: R – Xi'an's Og. offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)