RcppSMC 0.2.0

August 28, 2017
By

(This article was first published on Thinking inside the box , and kindly contributed to R-bloggers)

A new version 0.2.0 of the RcppSMC package arrived on CRAN earlier today (as a very quick pretest-publish within minutes of submission).

RcppSMC provides Rcpp-based bindings to R for the Sequential Monte Carlo Template Classes (SMCTC) by Adam Johansen described in his JSS article.

This release 0.2.0 is chiefly the work of Leah South, a Ph.D. student at Queensland University of Technology, who was during the last few months a Google Summer of Code student mentored by Adam and myself. It was pleasure to work with Leah on this, and see her progress. Our congratulations to Leah for a job well done!

Changes in RcppSMC version 0.2.0 (2017-08-28)

  • Also use .registration=TRUE in useDynLib in NAMESPACE

  • Multiple Sequential Monte Carlo extensions (Leah South as part of Google Summer of Code 2017)

    • Switching to population level objects (#2 and #3).

    • Using Rcpp attributes (#2).

    • Using automatic RNGscope (#4 and #5).

    • Adding multiple normalising constant estimators (#7).

    • Static Bayesian model example: linear regression (#10 addressing #9).

    • Adding a PMMH example (#13 addressing #11).

    • Framework for additional algorithm parameters and adaptation (#19 addressing #16; also #24 addressing #23).

    • Common adaptation methods for static Bayesian models (#20 addressing #17).

    • Supporting MCMC repeated runs (#21).

    • Adding adaptation to linear regression example (#22 addressing #18).

Courtesy of CRANberries, there is a diffstat report for this release.

More information is on the RcppSMC page. Issues and bugreports should go to the GitHub issue tracker.

This post by Dirk Eddelbuettel originated on his Thinking inside the box blog. Please report excessive re-aggregation in third-party for-profit settings.

To leave a comment for the author, please follow the link and comment on their blog: Thinking inside the box .

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...



If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.

Search R-bloggers

Sponsors

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)