Random sudokus [test]

May 17, 2010

(This article was first published on Xi'an's Og » R, and kindly contributed to R-bloggers)

Robin Ryder pointed out to me that 3 is indeed the absolute minimum one could observe because of the block constraint (bon sang, mais c’est bien sûr !). The distribution of the series of 3 digits being independent over blocks, the theoretical distribution under uniformity can easily be simulated:

#uniform distribution on the block diagonal
for (t in 1:10^6){

and it produces a result that is close enough to the one observed with the random sudoku generator. Actually, the exact distribution is available as (corrected on May 19!)

pdiag=c(1, #k=3
(3*6+3*6*4), #k=4
(3*choose(6,2)+3*6*5*choose(4,2)+3*choose(5,3)*choose(6,2)), #k=5
choose(6,3)*choose(6,2)*3), #k=7
(3*choose(6,2)*4+choose(6,3)*6*choose(3,2)), #k=8
choose(6,3))/choose(9,3)^2 #k=9
choose(9,6))/choose(9,3)^2 #k=9

hence a better qq-plot:

Filed under: R, Statistics Tagged: combinatorics, entropy, Kullback, Monte Carlo, simulation, sudoku, uniformity

To leave a comment for the author, please follow the link and comment on their blog: Xi'an's Og » R.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...

If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Tags: , , , , , , , ,

Comments are closed.

Search R-bloggers


Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)