R^2 Spectrum

April 21, 2012
By

(This article was first published on NIR-Quimiometría, and kindly contributed to R-bloggers)

We have seen in the previous post, how to calculate the correlation spectrum, but other simple way to show  how the bands correlate to the constituent of interest is to calculate R^2. This way we remove the negative part of the correlation spectrum.
Xmsc<-NIR_msc
Ymoi<-demo_raw$Moisture
cor_spec<-cor(Ymoi,Xmsc[,1:700])
rsq_spec<-(cor(Ymoi,Xmsc[,1:700]))^2
cov_spec<-cov(Ymoi,Xmsc[,1:700])*50
matplot(wave_nir,t(cor_spec),lty=1,pch=”*”,xlab=”nm”,ylab=”log(1/R)”)
matplot(wave_nir,t(rsq_spec),lty=1,pch=”*”,xlab=”nm”,ylab=”log(1/R)”)
matplot(wave_nir,t(cov_spec),lty=1,pch=”*”,xlab=”nm”,ylab=”log(1/R)”)
#We merge the R /R^2/Cov spectrum with the sample spectra treated with MSC.
cor_spec<-rbind(cor_spec,NIR_msc)
rsq_spec<-rbind(rsq_spec,NIR_msc)
cov_spec<-rbind(cov_spec,NIR_msc)
matplot(wave_nir,t(cor_spec),lty=1,pch=”*”,xlab=”nm”,ylab=”log(1/R)”)
matplot(wave_nir,t(rsq_spec),lty=1,pch=”*”,xlab=”nm”,ylab=”log(1/R)”)
matplot(wave_nir,t(cov_spec),lty=1,pch=”*”,xlab=”nm”,ylab=”log(1/R)”)
In order to see better the Covariance Spectrum, I multiplied by a factor,We can see how the covariance spectrum gives sharp bands an gives us a better idea where the variation due to moisture is.

To leave a comment for the author, please follow the link and comment on their blog: NIR-Quimiometría.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...



If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Tags:

Comments are closed.

Sponsors

Mango solutions



plotly webpage

dominolab webpage



Zero Inflated Models and Generalized Linear Mixed Models with R

Quantide: statistical consulting and training

datasociety

http://www.eoda.de





ODSC

ODSC

CRC R books series





Six Sigma Online Training









Contact us if you wish to help support R-bloggers, and place your banner here.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)