Paranormal Distribution

October 19, 2015
By

(This article was first published on » R, and kindly contributed to R-bloggers)

Paranormal Distribution

In case you want to read an influential paper on this matter, you can find it here.

library(ggplot2)
library(gridExtra)

theme_old <- theme(panel.grid.minor = element_blank(),
                   panel.grid.major = element_blank(),
                   panel.background = element_blank(),
                   plot.background = element_rect(fill="#F9F0Ea"),
                   panel.border =  element_blank(),
                   axis.line = element_blank(),
                   axis.text.x = element_blank(),
                   axis.text.y = element_text(colour=NA),
                   # axis.text.y = element_blank(),
                   axis.ticks = element_blank(),
                   axis.title.x = element_blank(),
                   axis.title.y = element_blank(),
# I'm using xkcd fonts, replace or install if you don't have it.
                   text = element_text(size=14, family="xkcd"),
                   axis.line = element_line(colour = "black", linetype = "solid", size = 1),
                   axis.line.y = element_blank(),
                   plot.title = element_text(size=22))
# normal
gplot1 <- ggplot(data.frame(x = c(-3, 3)), aes(x)) + stat_function(fun = dnorm) + labs(title = "Normal Distribution") + theme_old

# The floating dress 
a <- c(-3, -1.5, -0.9, -0.3, 0.6, 1, 1.5, 2, 3)
b <- c(0.004431848, 0.03, 0.0044, 0.03, 0.01, 0.030, 0.0044, 0.015, 0.004431848)

data <- data.frame(a = a, b = b)
c <- c(-0.40, 0.04)
d <- c(0.27, 0.27)
data2 <- data.frame(c = c, d = d)

# paranormal
gplot2 <- ggplot(data, aes(x=a, y=b)) + geom_line()
gplot2 <- gplot2 + stat_function(fun = dnorm) +
  geom_point(data = data2, aes(x=c, y=d), pch=0x30, size=6) +
  geom_point(data = data2, aes(x=c-0.008, y=d-0.006), pch=19, size=1) +
  labs(title = "Paranormal Distribution") + theme_old

grid.arrange(gplot1, gplot2)

To leave a comment for the author, please follow the link and comment on their blog: » R.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...



If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.

Search R-bloggers


Sponsors

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)