# missing digit in a 114 digit number [a Riddler’s riddle]

[This article was first published on

Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

**R – Xi'an's Og**, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

**A** puzzling riddle from The Riddler (as Le Monde had a painful geometry riddle this week): this number with 114 digits

530,131,801,762,787,739,802,889,792,754,109,70**?**,139,358,547,710,066,257,652,050,346,294,484,433,323,974,747,960,297,803,292,989,236,183,040,000,000,000

is missing one digit and is a product of some of the integers between 2 and 99. By comparison, 76! and 77! have 112 and 114 digits, respectively. While 99! has 156 digits. Using WolframAlpha on-line prime factor decomposition code, I found that only 6 is a possible solution, as any other integer between 0 and 9 included a large prime number in its prime decomposition:

However, I thought anew about it when swimming the next early morning [my current substitute to morning runs] and reasoned that it was not necessary to call a formal calculator as it is reasonably easy to check that this humongous number has to be divisible by 9=3×3 (for else there are not enough terms left to reach 114 digits, checked by lfactorial()… More precisely, 3³³x33! has 53 digits and 99!/3³³x33! 104 digits, less than 114), which means the sum of all digits is divisible by 9, which leads to 6 as the unique solution.

To

**leave a comment**for the author, please follow the link and comment on their blog:**R – Xi'an's Og**.R-bloggers.com offers

**daily e-mail updates**about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.

Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.