Measuring user retention using cohort analysis with R

April 27, 2012

(This article was first published on Ivan Kuznetsov » R, and kindly contributed to R-bloggers)

Cohort analysis is super important if you want to know if your service is in fact a leaky bucket despite nice growth of absolute numbers. There’s a good write up on that subject “Cohorts, Retention, Churn, ARPU” by Matt Johnson.

So how to do it using R and how to visualize it. Inspired by examples described in “Retention, Cohorts, and Visualizations” I came up with the following solution.

First, get the data in a suitable format, like this:

cohort  signed_up  active_m0  active_m1  active_m2
2011-10 12345      10432      8765       6754
2011-11 12345      10432      8765       6754
2011-12 12345      10432      8765       6754

Cohort here is in “YYYY-MM” format, signed_up is the number of users who have created accounts in the given month, active_m0 – number of users who have been active in the same month as they registered, active_m1 – number of users who have been active in the following month, and so forth. For newest cohorts you’ll be getting zeroes in some of active_mN columns, since there’s no data on them yet. This is taken into account in processing scripts.


# Load SystematicInvestor's plot.table (
con = gzcon(url('', 'rb'))

# Read the data
# Let's convert absolute values to percentages (% of the registered users remaining active)
cohort_p as.numeric(df$active_m0/df$signed_up), as.numeric(df$active_m1/df$signed_up), as.numeric(df$active_m2/df$signed_up),
as.numeric(df$active_m3/df$signed_up), as.numeric(df$active_m4/df$signed_up), as.numeric(df$active_m5/df$signed_up),
as.numeric(df$active_m6/df$signed_up), as.numeric(df$active_m7/df$signed_up), as.numeric(df$active_m8/df$signed_up) ))

# Create a matrix
temp = as.matrix(cohort_p[,3:(length(cohort_p[1,])-1)])
colnames(temp) = paste('Month', 0:(length(temp[1,])-1), sep=' ')
rownames(temp) = as.vector(cohort_p$V1)

# Drop 0 values and format data
temp[] = plota.format(100 * as.numeric(temp), 0, '', '%')
temp[temp == " 0%"] # Plot cohort analysis table
plot.table(temp, smain='Cohort(users)', highlight = TRUE, colorbar = TRUE)

This code produces nice visualizations of the cohort analysis as a table:

I used articles “Visualizing Tables with plot.table“ and “Response to Flowingdata Challenge: Graphing obesity trends” as an inspiration for this R code.

If you want to get nice colours as in the example above, you’ll need to adjust rainbow interval for plot.table. I managed to do it by editing functions code directly from R environment:

plot.table.helper.color <- edit(plot.table.helper.color)
 temp # matrix to plot
 # convert temp to numerical matrix
 temp = matrix(as.double(gsub('[%,$]', '', temp)), nrow(temp), ncol(temp))

highlight = as.vector(temp)
 cols = rep(NA, len(highlight))
 ncols = len(highlight[!])
 cols[1:ncols] = rainbow(ncols, start = 0, end = 0.3)

o = sort.list(highlight, na.last = TRUE, decreasing = FALSE)
 o1 = sort.list(o, na.last = TRUE, decreasing = FALSE)
 highlight = matrix(cols[o1], nrow = nrow(temp))
 highlight[] = NA

Adjust interval in line 11 to 0.5, 0.6 to get shades of blue.
plot.table.helper.colorbar <- edit(plot.table.helper.colorbar)

 plot.matrix # matrix to plot
 nr = nrow(plot.matrix) + 1
 nc = ncol(plot.matrix) + 1

c = nc
 r1 = 1
 r2 = nr

rect((2*(c - 1) + .5), -(r1 - .5), (2*c + .5), -(r2 + .5), col='white', border='white')
 rect((2*(c - 1) + .5), -(r1 - .5), (2*(c - 1) + .5), -(r2 + .5), col='black', border='black')

y1= c( -(r2) : -(r1) )

graphics::image(x = c( (2*(c - 1) + 1.5) : (2*c + 0.5) ),
 y = y1,
 z = t(matrix( y1 , ncol = 1)),
 col = t(matrix( rainbow(len( y1 ), start = 0.5, end = 0.6) , ncol = 1)),
 add = T)

Adjust interval in line 21 to 0.5, 0.6 to get shades of blue.

Now if you want to draw the cycle-like graph:

# make matrix shorter for the graph (limit to 0-6 months)
temp = as.matrix(cohort_p[,3:(length(cohort_p[1,])-1)])
temp temp[temp == "0"]
colnames(temp) = paste('Month', 0:(length(temp[1,])-1), 'retention', sep=' ')
palplot(temp[,1],pch=19,xaxt="n",col=pal[1],type="o",ylim=c(0,as.numeric(max(temp[,-2],na.rm=T))),xlab="Cohort by Month",ylab="Retention",main="Retention by Cohort")

for(i in 2:length(colnames(temp))) {

abline(h=(seq(0,1,0.1)), col="lightgray", lty="dotted")

This code produces nice visualizations of the cohort analysis as multicolour cycle graph:


To leave a comment for the author, please follow the link and comment on their blog: Ivan Kuznetsov » R. offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...

If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.

Search R-bloggers


Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)