**Xi'an's Og » R**, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)

Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

**A** combinatoric Le Monde mathematical puzzle that resembles many earlier ones:

Given a pool of 30 interns allocated to three person night-shifts, is it possible to see 31 consecutive nights such that (a) all the shifts differ and (b) there are no pair of shifts with a single common intern?

**I**n fact, the constraint there is very strong: two pairs of shift can only share zero or two interns. For one given shift, there are 26 other shifts with which it can share two interns, but then any two of those 26 others must share zero or two, which makes the two common to all and exclude any additional shift. But this is not the only approach to allocate the interns over the shifts since, as pointed out by Jean-Louis and checking with the following R code, ~~28 and not 27 is the maximum possible number of shifts under those conditions.~~

poss=combn(30,3) shft=matrix(NA,31,3) shft[1,]=sample(1:30,3) poss=poss[,sample(4060)] prop=poss[,1];k=2 acpt=intersect(prop,shft[1,]) while (((length(acpt)==1)+(length(acpt==3)))>0){ prop=poss[,k];k=k+1 acpt=intersect(prop,shft[1,])} shft[2,]=prop for(i in 3:31){ poss=poss[,sample(4060)] prop=poss[,1];k=2 acpt=(length(intersect(prop,shft[1,]))==1)+(length(intersect(prop,shft[1,]))==3) for (j in 2:(i-1)) acpt=acpt+(length(intersect(prop,shft[j,]))==1)+(length(intersect(prop,shft[j,]))==3) while ((acpt>0)&(k<4061)){ prop=poss[,k];k=k+1 acpt=(length(intersect(prop,shft[1,]))==1)+(length(intersect(prop,shft[1,]))==3) for (j in 2:(i-1)) acpt=acpt+(length(intersect(prop,shft[j,]))==1)+(length(intersect(prop,shft[j,]))==3)} if (k==4061) break() shft[i,]=prop}

For instance, here is a 28 day solution:

> shft [,1] [,2] [,3] [1,] 14 30 29 [2,] 5 17 19 [3,] 2 18 24 [4,] 15 16 20 [5,] 4 22 28 [6,] 3 21 25 [7,] 13 21 25 [8,] 4 7 28 [9,] 1 17 19 [10,] 2 18 27 [11,] 10 15 20 [12,] 2 24 27 [13,] 8 9 23 [14,] 4 12 28 [15,] 1 5 17 [16,] 4 11 28 [17,] 6 14 29 [18,] 6 14 30 [19,] 3 13 25 [20,] 9 23 26 [21,] 1 5 19 [22,] 10 15 16 [23,] 8 9 26 [24,] 8 23 26 [25,] 3 13 21 [26,] 10 16 20 [27,] 18 24 27 [28,] 6 29 30

Filed under: Books, R Tagged: arithmetics, intersect, Le Monde, mathematical puzzle, R

**leave a comment**for the author, please follow the link and comment on their blog:

**Xi'an's Og » R**.

R-bloggers.com offers

**daily e-mail updates**about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.

Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.