Le Monde puzzle [#1006]

May 2, 2017
By

(This article was first published on R – Xi'an's Og, and kindly contributed to R-bloggers)

Once the pseudo-story [noise] removed, a linear programming Le Monde mathematical puzzle:

For the integer linear programming problem

max 2x¹+2x²+x³+…+x¹⁰

under the constraints

x¹>x²+x³, x²>x³+x⁴, …, x⁹>x¹⁰+x¹, x¹⁰>x¹+x²

find a solution with the maximal number of positive entries.

Expressed this way, it becomes quite straightforward to solve with the help of a linear programming R code like lpSolve. Indeed, a simple iteration of the constraints shows that positive entries are necessarily bracketed by negative entries, since, e.g.,

x²<-88x¹/55, x¹⁰<-33x¹/55

(which applies to all consecutive triplets since the constraints are invariant by transposition). Hence there are at most five positive entries but calling lpSolve with this option

> lp (direction="max", 
objective.in=c(2,2,rep(1,8)),
const.mat=A, 
const.dir=rep(">=",10), 
const.rhs=rep(1,10)+A%*%c(rep(c(20,-1),5)), 
all.int=TRUE) 
Error: no feasible solution found

shows this is not possible. (The added vector is my way of getting around the constraint that lpSolve only considers positive entries. I therefore moved the negative entries by 20, meaning they are assumed to be larger than -20. Using the larger bound 50 does not change the outcome.) From there, there are 10 possible versions of vectors with four positive entries and a simple loop returns

> masume
[1] -90
> topast
 [1] -11 1 -13 1 -15 1 -17 1 -19 -9

as the maximal criterion and argument of this maximum with four positive entries.

As an aside, the previous Le Monde puzzle [#1005] was also provided by a linear system: given 64 cubes, each of the 384 faces being painted in one of four colours, with exactly 40 of these cubes exhibiting the four colours,  the question was about the number of cubes that could be bicolour so that a mono-colour super-cube could be reconstituted for all colours.  Which amounted to solve the four equations

4a+2b=24,4c+2d=40, b+c=8,d+3a=24,

leading to 40 quadri-colour, 16 tri-colour, and 8 bi-colour cubes.

Filed under: Kids, R Tagged: competition, Le Monde, linear programming, linear system of equations, lpSolve, mathematical puzzle, optimisation, R

To leave a comment for the author, please follow the link and comment on their blog: R – Xi'an's Og.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...



If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.

Search R-bloggers


Sponsors

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)