Category: portuguese

Entrando no R-bloggers.com

Hoje o Tal Galili, responsável pelo www.R-bloggers.com, um agregador de bloguers sobre R, me convidou para fazer parte da R-Bloggers. A partir de hoje todos os posts categorizados na seção Estatística/R, irão ser publicados automaticamente lá também. Caso você ainda não conheça o projeto, encorajo uma visita ao site www.R-bloggers.com, ou à sua versão em […]

Estimativa da Mortalidade Total (Z) por Curvas de Captura – Composição de Comprimentos

Esta postagem está relacionada a Estimativa da Mortalidade Total (Z) por Curvas de Captura – Composição de Idades

A seguir está o procedimento para o cálculo de Z a partir da composição de comprimentos das capturas. Para aplica-lo é necessário, além dos dados de captura (C) por classe de comprimento (L), é necessário que indiquemos os parâmetros da curva de crescimento de von Bertalanffy (Linf, k e t0).

O comprimento indicado (L1) é o limite inferior da classe. Os parâmetros de crescimento a serem utilizados serão Linf = 460 mm, k = 0,198 / ano e t0 = -0,271 / ano.

L1 C
30 18
60 28
90 43
120 51
150 50
180 42
210 40
240 33
270 29
300 18
330 15
360 8
390 2
420 3
450 1


# importa e visualizadados
dat.CL <- read.delim(“clipboard”,dec=”,”)
dat.CL

# entra parâmetros da curva de crescimento
Linf <- 460
k <- 0.198
to <- -0.271

# calcula o intervalo de classe utilizado
IC <- dat.CL[2,1]-dat.CL[1,1]
IC

# estima a idade de quando o espécime entra na classe de comprimento
attach(dat.CL)
dat.CL$t <- to-(1/k)*log(1-L1/Linf)

# calcula o tempo que um espécime fica na classe de comprimento
dat.CL$dt <- (1/k)*log((Linf-L1)/(Linf-(L1+IC)))

# estima a idade média do espécime na classe
dat.CL$tm <- (to-(1/k)*log(1-L1/Linf)+to-(1/k)*log(1-(L1+IC)/Linf))/2

# estima o log da captura por unidade de tempo
dat.CL$cdt <- log(C/dat.CL$dt)
dat.CL
detach(dat.CL)

# desenha o gráfico e indica os pontos selecionados
attach(dat.CL)
par(mar=c(5,5,4,2))
plot(cdt~tm,xlab=”idade (anos)”,ylab=expression(log(C[“L,L+1”] / Delta* t)),
cex.lab=1.5,pch=19,col=”blue”,xlim=c(0,max(na.omit(tm))*1.1))
# clique no gráfico para selecionar os pontos inicial e final.
# Depois de selecionar os dois pontos dê um clique direito para sair.
idn.CL<-identify(cdt~tm,plot=F)
idn.CL
dat.CLs <- dat.CL[c(idn.CL[1]:idn.CL[2]),]
dat.CLs
points(dat.CLs$tm,dat.CLs$cdt,cex=1.5,col=”red”)
detach(dat.CL)

# ajusta o modelo linear para o cálculo de Z
attach(dat.CLs)
lm.Zl <- lm(cdt~tm)
summary(lm.Zl)
lines(c(min(tm)-0.5,max(tm)+0.5),
  c(coef(lm.Zl)[1]+coef(lm.Zl)[2]*(min(tm)-0.5),coef(lm.Zl)[1]+coef(lm.Zl)[2]*(max(tm)+0.5)),
  col=”red”)
detach(dat.CLs)

# calcula Z, seus intervalos de confiança
# Z = -b; % de indivíduos que morrem anualmente = 1-exp(-Z)
Zl <- -coef(lm.Zl)[2]
Zl
-confint(lm.Zl)[2,]

# Mortalidade expressa em porcentagem
1-exp(-Zl)

# Porcentagem de sobreviventes (S)
exp(-Zl)







Estimativa da Mortalidade Total (Z) por Curvas de Captura – Composição de Idades

A mortalidade é um parâmetro importante para a compreensão da dinâmica de uma coorte. Através desta taxa pode-se estimar o número (absoluto ou relativo) de indivíduos que morrem na população em um dado período.

Existem diversos métodos para a estimativa da taxa instantânea de mortalidade total (Z). O detalhamento destes podem ser encontrados em referências como Chapman e Robson (1960), Pauly (1983, 1984a e 1984b), Pauly e Morgan (1987), Gulland e Rosenberg (1992) e Sparre e Venema (1997).
No R há o pacote FSA – Fisheries stock assessment methods, que trás várias funções para o estudo de dinâmica de populações e avaliação de estoques.
O cálculo da taxa de mortalidade total é simples e vale fazê-lo “na mão”. Abaixo indico o procedimento para o cálculo de Z a partir de dados de captura (C) na idade (I). Z é uma taxa instantânea. No entanto, pode-se calcular os valores percentuais de mortos e sobreviventes (S) com facilidade.
  
I C
0 1867,1
1 5090,5
2 5304,7
3 2186,6
4 947,5
5 380,7
6 176,8
7 75,3
8 31,6

# importa e visualiza dados
dat.CI <- read.delim(“clipboard”,dec=”,”)
dat.CI

# desenha o gráfico e indica os pontos selecionados
attach(dat.CI)
par(mar=c(5,5,4,2))
plot(log(C)~I,xlab=”idade (anos)”,ylab=expression(log(C[“t,t+1”])),
cex.lab=1.5,pch=19,col=”blue”,ylim=c(0,max(log(C)*1.1)),xlim=c(0,max(I)*1.1))
# clique no gráfico para selecionar os pontos inicial e final.
# Depois de selecionar os dois pontos dê um clique direito para sair.
idn.CI<-identify(log(C)~I,plot=F)
idn.CI
dat.CIs <- dat.CI[c(idn.CI[1]:idn.CI[2]),]
dat.CIs
points(dat.CIs$I,log(dat.CIs$C),cex=1.5,col=”red”)
detach(dat.CI)

# ajusta o modelo linear para o cálculo de Z
attach(dat.CIs)
lm.Zi <- lm(log(C)~I)
summary(lm.Zi)
lines(c(min(I)-0.5,max(I)+0.5),
  c(coef(lm.Zi)[1]+coef(lm.Zi)[2]*(min(I)-0.5),coef(lm.Zi)[1]+coef(lm.Zi)[2]*(max(I)+0.5)),
  col=”red”)
detach(dat.CIs)

# calcula Z (Z = -b) e seus intervalos de confiança
Zi <- -coef(lm.Zi)[2]
Zi
– confint(lm.Zi)[2,]

# Mortalidade expressa em porcentagem
1-exp(-Zi)

# Porcentagem de sobreviventes (S)
exp(-Zi)  

Ilustração do método Newton-Raphson em regressão não linear

Em regressão não linear, as estimativas dos parâmetros são obtidas por emprego de algum método numérico. Um dos métodos empregados é o de Newton-Raphson. Tal método é usado para encontrar raízes de uma função. Portanto, não é um método de maximação/mínimização de funções, mas a derivada no ponto crítico de uma função é zero. Documentação […]

Utilização do RKWard

O RKWard é uma órima interface para o R. É a que mais utilizo.Além tornar algumas funções básicas acessíveis através de menu (algo que nunca utilizei), possui um ótimo editor de script e outras funcionalidades. Por exemplo o editor de script …

Utilização do RKWard

O RKWard é uma órima interface para o R. É a que mais utilizo.Além tornar algumas funções básicas acessíveis através de menu (algo que nunca utilizei), possui um ótimo editor de script e outras funcionalidades. Por exemplo o editor de script …