Introduction to Fractals

[This article was first published on Exegetic Analytics » R, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

A short while ago I was contracted to write a short piece entitled “Introduction to Fractals”. The article can be found here. Admittedly it is hard to do justice to the topic in less than 1000 words. Both of the illustrations were created with R.

Mandelbrot Set

The Mandelbrot Set image was created using the Julia package.

library(Julia)

First an image of the entire set showing a region that we will zoom in on later.

npixel <- 2001
#
rshift = -0.75
ishift =  0.0
#
centre <- rshift + ishift * 1i
width <- 3.0
#
mandelbrot <- MandelImage(npixel, centre, width)

gray.colors <- gray((0:256)/ 256)

mandelbrot = t(mandelbrot[nrow(mandelbrot):1,])

x = 0:npixel / npixel * width - width / 2 + rshift
y = 0:npixel / npixel * width - width / 2 + ishift
#
image(x, y, mandelbrot, col = rev(gray.colors), useRaster = TRUE, xlab = "Real", ylab = "Imaginary",
      axes = FALSE)
box()
axis(1, at = seq(-2, 2, 0.5))
axis(2, at = seq(-2, 2, 0.5))
rect(-0.325, 0.75, 0.075, 1.15, border = "black", lwd = 2)
points(c(0.5, 0), c(0, 1), pch = 19)
text(c(0.5, 0), c(0, 1), labels = c("A", "B"), adj = c(1.55, -0.3))

mandelbrot-full

Then the zoomed in region.

npixel <- 2001;
#
rshift = -0.125
ishift =  0.95
#
centre <- rshift + ishift * 1i
width <- 0.4
#
zoom.mandelbrot <- MandelImage(npixel, centre, width)

zoom.mandelbrot = t(zoom.mandelbrot[nrow(zoom.mandelbrot):1,])

x = 0:npixel / npixel * width - width / 2 + rshift
y = 0:npixel / npixel * width - width / 2 + ishift
#
image(x, y, zoom.mandelbrot, col = rev(gray.colors), useRaster = TRUE, xlab = "Real",
      ylab = "Imaginary", axes = FALSE)
box()
axis(1, at = seq(-2, 2, 0.05))
axis(2, at = seq(-2, 2, 0.05))
points(c(0.5, 0), c(0, 1), pch = 19)
text(c(0.5, 0), c(0, 1), labels = c("A", "B"), adj = -0.75)

mandelbrot-zoom

Cantor Set

The Cantor Set illustration was naturally created with a simple recursive algorithm.

cantor.set <- function(x) {
    y = list()
    for (n in x) {
        nL = n[1]
        nR = n[2]
        nl = nL + (nR - nL) / 3
        nr = nR - (nR - nL) / 3
        y[[length(y)+1]] <- c(nL, nl)
        y[[length(y)+1]] <- c(nr, nR)
    }
    return(y)
}

C = list()
#
C[[1]] = list(c(0, 1))
C[[2]] = cantor.set(C[[1]])
C[[3]] = cantor.set(C[[2]])
C[[4]] = cantor.set(C[[3]])
C[[5]] = cantor.set(C[[4]])
C[[6]] = cantor.set(C[[5]])
C[[7]] = cantor.set(C[[6]])
C[[8]] = cantor.set(C[[7]])
C[[9]] = cantor.set(C[[8]])
C[[10]] = cantor.set(C[[9]])

par(mar = c(4.1, 0.0, 2.1, 0.0))
plot(NULL, xlim = c(0,1), ylim = c(0, 7), axes = FALSE, xlab = "", ylab = "")
axis(1)
#
for (n in 1:7) {
    for (p in C[[n]]) {
        # print(p)
        lines(p, c(8-n ,8-n), lwd = 8, lend = "butt")
        text(x = 0, y = n, 7 - n, adj = c(3, 0.5))
    }
}

cantor-set

To leave a comment for the author, please follow the link and comment on their blog: Exegetic Analytics » R.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)