# Hamiltonian tails

July 16, 2018
By

Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

“We demonstrate HMC’s sensitivity to these parameters by sampling from a bivariate Gaussian with correlation coefficient 0.99. We consider three settings (ε,L) = {(0.16; 40); (0.16; 50); (0.15; 50)}” Ziyu Wang, Shakir Mohamed, and Nando De Freitas. 2013

In an experiment with my PhD student Changye Wu (who wrote all R codes used below), we looked back at a strange feature in an 2013 ICML paper by Wang, Mohamed, and De Freitas. Namely, a rather poor performance of an Hamiltonian Monte Carlo (leapfrog) algorithm on a two-dimensional strongly correlated Gaussian target, for very specific values of the parameters (ε,L) of the algorithm.

The Gaussian target associated with this sample stands right in the middle of the two clouds, as identified by Wang et al. And the leapfrog integration path for (ε,L)=(0.15,50)

keeps jumping between the two ridges (or tails) , with no stop in the middle. Changing ever so slightly (ε,L) to (ε,L)=(0.16,40) does not modify the path very much

but the HMC output is quite different since the cloud then sits right on top of the target

with no clear explanation except for a sort of periodicity in the leapfrog sequence associated with the velocity generated at the start of the code. Looking at the Hamiltonian values for (ε,L)=(0.15,50)

and for (ε,L)=(0.16,40)

does not help, except to point at a sequence located far in the tails of this Hamiltonian, surprisingly varying when supposed to be constant. At first, we thought the large value of ε was to blame but much smaller values still return poor convergence performances. As below for (ε,L)=(0.01,450)

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.